
Application of Hierarchical Hybrid

Encodings to Efficient Translation of

CSPs to SAT

1

Van-Hau Nguyen

International Center for Computational Logic

TU Dresden

Joint with Miroslav N. Velev and Pedro Barahona

Outline

� Motivation

� Preliminaries

2

� The Log-Direct & Log-Order Encodings

� Comparisons & Experiments

� Conclusions & Future Works

Motivation – SAT solving

� Boolean Satisfiability (SAT) solving has been an

increasing impact on applications in various areas

� SAT solving = SAT solvers + SAT encodings

� SAT solvers have reached a high level of development and
efficiency.

� SAT encodings: … limited and challenging

3

� SAT encodings: … limited and challenging

� Many applications in computer science can be

expressed as Constraint Satisfaction Problems (CSPs),

while hardly any such problems are originally given by

SAT formulas

� Translating CSPs into SAT !

Motivation – SAT encodings

� Direct encoding [deKleer89] (Support [Gent02]):

☺ Propagation: Forward checking (Arc consistency), e.g. NP-
SPEC [Cadoli05], CSP2SAT 4J[Berre08]

� # variables: BIG

� Order encoding [Tamura06]

☺ Propagation: bound, e.g. Sugar [Tamura06], BEE [Metodi12]

4

☺ Propagation: bound, e.g. Sugar [Tamura06], BEE [Metodi12]

� # variables: BIG

� Log encoding [Walsh00]

☺ # variable: small

� Propagation: less powerful, due to long clauses

� Studying the log-direct & the log-order encodings!

Preliminaries – CSP

� A Constraint Satisfaction Problem (CSP) is a triple {V, {V, {V, {V,

D, C}D, C}D, C}D, C}, where:

� VVVV is a set of k multi-valued variables,

� DDDD is the set of their domains,

� C C C C is a set of m constraints.

� A finite CSP : a finite set of variables, each having a

5

� A finite CSP : a finite set of variables, each having a

finite domain

� The CSP problem is to determine whether there exists

one assignment that satisfies all the constraints

� We consider a CSP variable v with the domain n values

Preliminaries – SAT

� A Boolean Satisfiability problem (SAT)

� A conjunction normal form (CNF) is a conjunction of clauses,

defined on a set of Boolean variables.

� A clause is a disjunction of literals , where a literal is either a
Boolean variable or its negation.

� A clause is

6

� satisfied if at least one of its literals is assigned to true,

� unsatisfied if all of its literals are assigned to false.

� The formula is satisfiable if there exists a truth assignment

that satisfies all of its clauses, unsatisfiable otherwise

� The SAT problem is to determine whether a formula is

satisfiable

Preliminaries – CSP2SAT

� The direct encoding [deKleer89] (support [Gent02])

� Uses n propositional variables to encode

a CSP v with a finite domain

� Requires: at-least-one and at-most-one clauses

� The order encoding [Tamura06]

� Uses a vector of n -1 propositional variables to

7

� Uses a vector of n -1 propositional variables to
encode CSP v with a finite domain

� Requires: the domain constraint (a non-increasing vector)

� The interval variables � the propagation of bounds [5, 23, 32]

Preliminaries – CSP2SAT

� The log encoding [Walsh00]

� Uses Boolean variables.

� Requires no at-least-one and at-most clauses, but prohibited-
value clauses.

� Hierarchical Hybrid Encodings [Velev07]

8

� Hierarchical Hybrid Encodings [Velev07]

� A domain is recursively divided into smaller subdomains, until at
the lowest level each subdomain contains a single a domain
value. At each level of the hierarchy, one can choose a simple
encoding and the number of subdomains on the next level.

� The 12 simple encodings combined with a variety of structures
led to a numerous way of translations of a domain to SAT �
impractical

The Log-direct Encoding (1)

� Basic Idea

The log-direct encoding is the first such hierarchical hybrid
encoding, where the log encoding at level one has one
indicator variable bv dividing the domain into two subdomains
represented at level two with the direct encoding by mean of
Boolean “direct” variables.

9

Boolean “direct” variables.

� An assignment can be expressed

The Log-direct Encoding (2)

� Proposition 1

The log-direct encoding to index the domain values of some CSP
variable when encoding a CSP onto an equivalent SAT problem is
sound and complete.

� An illustration of encoding a CSP variable into SAT.
b
v

10

1

1 0

b
v

1

x
1

x
2

x
4

x
3

v
1

v
2

v
4

v
3

x
1

x
2

x
4

x
3

v
5

v
6

v
8

v
7

1 1 1 1 1 1

The Log-direct Encoding (3)

� Proposition 2
The sparse encoding requires n Boolean variables to encode a
CSP variable v with n domains whereas the log-direct encoding
requires only n/2+1 Boolean variables.

� Proposition 3

Unit propagation applied to the log-direct encoding is
incomparable to the direct encoding.

11

incomparable to the direct encoding.
Suppose CSP variables: W, Y with domain {1, …, 8}.

� And a CSP constraint W ≠3 ˅ Y≠5:
o The log-direct : (¬bW˅ ¬x3) ˅ (bY˅ ¬x1

Y)

o The direct : ¬dW
3 ˅ ¬dY

5

o Now Y = 5…

� A CSP constraint W ≤ 5
� The log-direct : bW˅x1

� The direct: dW
1 ˅ dW

2 ˅ dW
3 ˅ dW

4 ˅ dW
5

� Now W ≠5…

The Log-direct Encoding (4)

� Proposition 4
Unit propagation applied to the log-direct encoding is stronger
than to the log encoding.

1. If unit propagation commits to particular truth assignments
on the log encoding, then unit propagation commits to the
same truth assignments on the log-direct encoding.

2. If unit propagation generates the empty clause in the log
encoding then unit propagation generates the empty clause

12

encoding then unit propagation generates the empty clause
in the log-direct encoding then (but the reverse does not
necessarily hold).

� Proof: Similar to the proof of Theorem 15 [Walsh00]

The Log-order Encoding (1)
� Basic Idea

The order-direct encoding is the first such hierarchical
hybrid encoding, where the log encoding at level one has one
indicator variable bv dividing the domain into two subdomains
represented at level two with an order encoding by mean of
Boolean order variables.

� An assignment can be expressed

13

� An assignment can be expressed

The Log-order Encoding (2)
� Proposition 5

The log-order encoding to index the domain values of some CSP
variable when encoding a CSP onto an equivalent SAT problem is
sound and complete.

� An illustration of the log-order encoding to encode a CSP
variable into SAT. b

v

1 0

14

1 0

0

v
1

v
2

v
4

v
3

x
1

x
2

x
3

1 0 1 0 1 0

v
5

v
6

v
8

v
7

x
1

x
2

x
3

1 0 1 0 1

The Log-order Encoding (3)

� Proposition 6
The sparse encoding requires n-1 Boolean variables to encode a
CSP variable v with n domains whereas the log-order encoding
requires only n/2 Boolean variables.

� Proposition 7

15

� Proposition 7

Unit propagation applied to the log-order encoding is
incomparable to the order encoding.

� Proof: Similar to Proposition 3 by giving an
appropriate example

Comparisons

� Comparison of different encodings regarding to the
number of variables and clauses required to encode a
CSP variable with n value into SAT

Methods # variables # clauses

direct n ~n2/2n ~n /2

log-direct ~n/2 ~n2/8

order n-1 ~n

log-order ~n/2 ~n/2

Experiments – Pigeon Hole Problems
� Proving that n pigeons can not fit in n-1 holes.

Instance direct l.direct Speedup order l.order Speedup

11 18.2 0.8 22.8× 3.3 0.9 3.7××××

12 170.9 5.3 32.2× 15.2 4.2 3.8×

13 2,033.1 22.9 88.8 72.0 15.5 4.613 2,033.1 22.9 88.8× 72.0 15.5 4.6×

14 28,332.9 125.2 226.3× 1,013.4 65.8 15.4×

15 >86,400.0 661.2 >130.7× 7,394.6 232.2 31.8×

Min. 18.2 0.8 22.8× 3.3 0.9 3.7×

Max. >86,400.0 661.2 226.3× 7,394.6 232.2 31.8×

Average >7,638.8 163.1 >100.1×××× 1,699.7 63.7 11.9××××

Experiments – Graph Coloring Problems
� Requiring an assignment of colors to the vertices of an

undirected graph, such that no two adjacent vertices share
the same color.

� The instances taken from [Color03]

Instance K direct l.direct Speedup order l.order Speedup

DSJC125.9 9 35.6 0.6 57.5× 0.7 0.5 1.4×
10 274.8 1.6 171.8× 2.3 1.3 1.8×
11 10,839.2 7.0 1548.5× 8.1 3.8 2.1×

DSJC250.9 9 71.9 5.4 13.1× 3.6 3.4 1.1×
10 376.8 9.2 41.0× 7.4 4.5 1.6×
11 11,150.8 213.8 52.2× 42.2 142.0 0.3×

miles750 9 15.6 0.3 58.0× 0.6 0.2 2.8×
10 187.5 0.7 267.9× 1.9 0.6 3.2×
11 3,214.1 4.5 714.2× 15.5 3.1 5.0×

miles1000 9 18.8 0.3 49.6× 0.4 0.3 1.1×
10 319.0 0.9 354.4× 3.0 0.9 3.3×
11 8,932.9 5.1 1751.5 21.0 3.9 5.4×

miles1500 9 26.8 0.6 44.8× 0.9 0.5 1.7×
10 463.4 1.3 356.5× 2.5 0.9 2.8×
11 11,295.2 6.8 1661.1× 20.7 3.6 5.8×

queen12_12 9 6.8 0.3 21.5× 0.5 0.2 2.5×
10 28.6 0.7 38.7× 1.7 0.7 2.2×
11 152.3 4.7 32.3× 5.2 3.9 1.3×

queen13_13 9 8.4 0.3 23.4× 0.7 0.3 2.4×
10 63.7 0.8 75.0× 1.9 0.9 2.1×

600.325/425
Declarative Methods -
J. Eisner

10 63.7 0.8 75.0× 1.9 0.9 2.1×
11 473.7 4.7 99.7× 8.3 3.5 2.4×

queen14_14 9 11.75 0.4 28.7× 0.7 0.3 1.9×
10 141.4 0.9 157.1× 2.2 0.9 2.4×
11 967.3 4.8 201.0× 15.3 0.9 17.0×

queen15_15 9 19.6 0.4 49.0× 0.9 0.4 2.3×
10 214.9 1.1 195.4× 3.2 1.0 3.2×
11 1237.3 5.3 230.0× 15.3 4.0 3.8×

queen16_16 9 16.2 0.6 26.6× 0.6 0.5 1.2×
10 128.9 1.2 107.4× 3.7 1.1 3.4×
11 2,194.9 5.1 430.4× 60.4 5.1 11.8×

school1 9 44.6 1.6 27.6× 1.3 1.2 1.1×
10 345.7 4.5 76.8× 5.2 2.0 2.6×
11 3,858.0 10.2 378.2× 9.8 7.6 1.3×

2-FullIns 5 5 0.3 1.7 0.2× 2.0 0.2 8.8×
6 42.5 3,762.6 0.01× 4,842.5 16.0 301.5×

5-FullIns 7 0.7 6.9 0.1× 2.0 0.4 5.1×
8 109.65 3,966.7 0.01× 4,235.8 12.4 341.6×

Min. 0.3 0.3 0.01× 0.4 0.2 0.30×
Max. 11,295.2 3,966.7 1,751.5× 4,842.5 142.0 341.6×
Average 1,555.7 217.4 252.5× 252.7 6.3 20.6×

Experiments – Open Shop Problems
� Finding the minimize the makespan such that given n jobs

and m workstations, each job has to be processed on a
workstation at least once

� The instances taken from [Taillard]

Instance M S/U direct l.direct Speedup order l.order Speedup

41 192 U 19.4 1.3 14.9× 0.09 0.15 0.6×
193 S 20.1 1.3 15.5× 0.17 0.23 0.7×

42 235 U 35.7 1.9 18.8× 0.11 0.22 0.5×
236 S 37.3 1.7 21.9× 0.14 0.20 0.7×

43 270 U 65.9 2.7 24.4× 0.25 0.31 0.8×
271 S 70.1 2.6 27.0× 0.16 0.24 0.7×

44 249 U 42.8 2.3 18.6× 0.17 0.29 0.6×
250 S 44.1 1.7 25.9× 0.16 0.25 0.6×

45 294 U 77.1 3.3 23.4× 0.19 0.35 0.5×
295 S 78.5 2.7 29.1× 0.12 0.20 0.6×

51 299 U 127.5 6.2 20.6 × 0.71 0.65 1.1×
300 S 126.7 7.1 17.8 × 0.72 0.69 1.0×

52 261 U 130.9 8.8 14.9× 0.84 0.99 0.8×
262 S 129.5 7.7 16.8× 0.75 0.59 1.3×

53 327 S 190.1 16.9 11.2× 0.57 1.1 0.5×
328 S 198.4 14.7 13.5× 2.0 1.8 1.1×

600.325/425
Declarative Methods -
J. Eisner

328 S 198.4 14.7 13.5× 2.0 1.8 1.1×
54 309 U 257.8 17.4 14.8× 2.3 2.6 0.9×

310 S 176.6 13.5 13.1× 1.2 1.7 0.7×
55 325 U 408.6 20.8 19.6× 4.4 4.1 1.1×

326 S 174.2 19.0 9.2× 1.3 2.7 0.5×
71 436 S 252.2 130.0 1.9× 7.1 8.1 0.9×

437 S 296.4 161.0 1.8× 11.7 9.0 1.1×
72 444 S 213.4 168.9 1.3× 12.8 12.1 1.1×

445 S 265.6 144.2 1.8× 5.1 10.7 0.5×
73 470 S 669.1 349.3 1.9× 53.8 28.7 1.9×

471 S 750.6 482.9 1.6× 51.0 40.8 1.3×
74 463 S 637.1 271.5 2.3× 19.8 12.4 1.6×

464 S 275.5 160.7 1.7× 10.6 5.7 1.9×
75 416 S 268.3 142.0 1.9× 27.3 15.1 1.8×

417 S 320.4 99.7 3.2× 11.9 4.9 2.4×
Min. 19.4 1.3 1.3× 0.07 0.15 0.5×
Max. 750.6 482.9 29.1× 53.8 40.8 2.4×

Average 186.9 75.5 13.0×××× 6.1 5.1 1.0××××

Experiments – All Interval Serial Problems
� Arranging a permutation of the n integers ranging from

differences between adjacent numbers are also a
permutation, of the numbers from 1 to n-1 [csplib]. 1 to n

� Finding all solutions

Instance direct l.direct Speedup order l.order Speedup SolInstance direct l.direct Speedup order l.order Speedup Sol

13 252.0 26.2 9.6× 6.0 18.3 0.3× 3200

14 1,787.5 162.5 11.0× 16.0 58.2 0.3× 9912

15 13,660.0 206.0 66.3× 52.7 265.8 0.2× 25592

16 >86,400.0 742.4 >116.4× 107.4 702.5 0.2× 55920

Min. 252.0 26.2 9.6× 6.0 18.3 0.2×

Max. >86,400.0 742.4 >116.4× 107.4 702.5 0.3×

Average >25,524.9 284.3 >50.8×××× 45.5 261.2 0.3××××

Conclusions

� Although we used only clasp solver, but similar results
were obtained for other solvers (lingeling, riss3G).

� The log-direct encoding (mentioned by [Velev07] but not
tested) significantly outperforms the direct encoding,
with runtime speedups of one to two order of magnitude
(increasing with the size of the instances).(increasing with the size of the instances).

� The log-order encoding, a hierarchical hybrid encoding
based on a new combination of simple encodings. In
general, the log-order encoding is comparable with the
order encoding.

� Two simple encoding with the powerful propagation

Future Works

� Further study the use of the log-direct and log-order
encodings for a wide variety of real-life problems

� Features of these problems that might be more
efficiently explored by the different encodings, namely
with large domains, where more than one indicator
variable at the first level of encoding might be more variable at the first level of encoding might be more
suitable

� We will also develop a SAT-based CSP solver, like
Sugar [Tamura09] with advanced improvements
[Metodi12]

Thank you for your attention!

600.325/425
Declarative Methods -
J. Eisner

References

[Color03] A Computational Symposium at Cornell University, Ithaca, NY, USA,
2002. http://mat.gsia.cmu.edu/COLOR03/

[Berre08] Berre, D.L., Lynce, I.: CSP2SAT4J: A simple CSP to SAT translator.
In: Proceedings of the Second International CSP Solver
Competition (2008)

[Cadoli05] Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT.
Artif. Intell. 162(1-2), 89–120 (2005)

[csplib] Hnich, B., Miguel, I., Gent, I.P., Walsh, T.: CSPlib is a library of test
problems for constraint solvers. http://www.csplib.org/

26

problems for constraint solvers. http://www.csplib.org/
[Gent02] Gent, I.: Arc consistency in SAT. In fifteenth European Conference on

Artificial Intelligence pp. 121–125 (2002)
[deKleer89] J. de Kleer, “A Comparison of ATMS and CSP Techniques,” 11th IJCAI.

International Joint Conference on Artificial Intelligence, August 1989.
[Metodi12] Metodi, A., Codish, M.: Compiling finite domain constraints to SAT with

BEE. Theory and Practice of Logic Programming 12(4-5), 465–483
(2012)

References
[Tamura06] Tamura, N., Taga, A., Kitagawa, S., & Banbara, M. Compiling finite linear

CSP into SAT. In Proceedings of the 12th international conference on
principles and practice of constraint programming (CP 2006) (pp. 590–
603).

[Velev07] Velev, M.N.: Exploiting hierarchy and structure to efficiently solve
graph coloring as SAT. In: International Conference on Computer-
Aided Design (ICCAD’07), November 5-8, 2007, San Jose, CA, USA.
pp. 135–142. IEEE (2007)

[Velev09a] Velev, M.N., Gao, P.: Efficient SAT techniques for absolute encoding of
permutation problems: Application to hamiltonian cycles. In: Eighth

27

permutation problems: Application to hamiltonian cycles. In: Eighth
Symposium on Abstraction, Reformultion, and Approximation, SARA
2009, Lake Arrowhead, California, USA, 8-10 August 2009. AAAI
(2009)

[Velev09b] Velev, M.N., Gao, P.: Exploiting hierarchical encodings of equality to
design independent strategies in parallel SMT decision procedures for
a logic of equality. In: IEEE International High Level Design Validation
and Test Workshop, HLDVT 2009, San Francisco, CA, USA, 4-6
November 2009. pp. 8–13 (2009)

[Walsh00] Walsh, T.: SAT v CSP. In: Principles and Practice of Constraint
Programming - CP2000. LNCS, vol. 1894, pp. 441–456 (2000)

