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Motivation – SAT solving

� Boolean Satisfiability (SAT) solving has been an 

increasing impact on applications in various areas

� SAT solving = SAT solvers + SAT encodings

� SAT solvers have reached a high level of development and 
efficiency.

� SAT encodings: … limited and challenging
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� SAT encodings: … limited and challenging

� Many applications in computer science can be 

expressed as Constraint Satisfaction Problems (CSPs), 

while hardly any such problems are originally given by 

SAT formulas

� Translating CSPs into SAT !



Motivation – SAT encodings

� Direct encoding [deKleer89] (Support [Gent02]):

☺ Propagation: Forward checking (Arc consistency), e.g. NP-
SPEC [Cadoli05], CSP2SAT 4J[Berre08]

� # variables: BIG

� Order encoding [Tamura06]

☺ Propagation: bound, e.g. Sugar [Tamura06], BEE [Metodi12]
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☺ Propagation: bound, e.g. Sugar [Tamura06], BEE [Metodi12]

� # variables: BIG

� Log encoding [Walsh00]

☺ # variable: small

� Propagation: less powerful, due to long clauses

� Studying the log-direct & the log-order encodings!



Preliminaries – CSP

� A Constraint Satisfaction Problem (CSP) is a triple {V, {V, {V, {V, 

D, C}D, C}D, C}D, C}, where: 

� VVVV is a set of k multi-valued variables,

� DDDD is the set of their domains,

� C C C C is a set of m constraints.

� A finite CSP : a finite set of variables, each having a 
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� A finite CSP : a finite set of variables, each having a 

finite domain

� The CSP problem is to determine whether there exists 

one assignment that satisfies all the constraints

� We consider a CSP variable v with the domain n values



Preliminaries – SAT

� A Boolean Satisfiability problem (SAT)

� A conjunction normal form (CNF)  is a conjunction of clauses, 

defined on a set of Boolean variables. 

� A clause  is a disjunction of literals , where a literal is either a 
Boolean variable or its negation.

� A clause is 
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� satisfied if at least one of its literals is assigned to true, 

� unsatisfied if all of its literals are assigned to false. 

� The formula  is satisfiable if there exists a truth assignment 

that satisfies all of its clauses, unsatisfiable otherwise

� The SAT problem is to determine whether a formula is 

satisfiable



Preliminaries – CSP2SAT

� The direct encoding [deKleer89] (support [Gent02])

� Uses n propositional variables                    to encode 

a CSP v with a finite domain                          

� Requires: at-least-one and at-most-one clauses

� The order encoding [Tamura06]

� Uses a vector of n -1 propositional variables                    to 
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� Uses a vector of n -1 propositional variables                    to 
encode CSP v with a finite domain              

� Requires: the domain constraint (a non-increasing vector)

� The interval variables � the propagation of bounds [5, 23, 32]



Preliminaries – CSP2SAT

� The log encoding [Walsh00]

� Uses                          Boolean variables. 

� Requires no at-least-one and at-most clauses, but prohibited-
value clauses.

� Hierarchical Hybrid Encodings [Velev07]
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� Hierarchical Hybrid Encodings [Velev07]

� A domain is recursively divided into smaller subdomains, until at 
the lowest level each subdomain contains a single a domain 
value. At each level of the hierarchy, one can choose a simple 
encoding and the number of subdomains on the next level.

� The 12 simple encodings combined with a variety of  structures
led to a numerous way of translations of a domain to SAT �
impractical 



The Log-direct Encoding (1)

� Basic Idea

The log-direct encoding is the first such hierarchical hybrid
encoding, where the log encoding at level one has one
indicator variable bv dividing the domain into two subdomains
represented at level two with the direct encoding by mean of
Boolean “direct” variables.
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Boolean “direct” variables.

� An assignment can be expressed 



The Log-direct Encoding (2)

� Proposition 1

The log-direct encoding to index the domain values of some CSP
variable when encoding a CSP onto an equivalent SAT problem is
sound and complete.

� An illustration of encoding a CSP variable into SAT.
b
v
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The Log-direct Encoding (3)

� Proposition 2
The sparse encoding requires n Boolean variables to encode a
CSP variable v with n domains whereas the log-direct encoding
requires only n/2+1 Boolean variables.

� Proposition 3

Unit propagation applied to the log-direct encoding is
incomparable to the direct encoding.
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incomparable to the direct encoding.
Suppose CSP variables: W, Y with domain {1, …, 8}.

� And a CSP constraint W ≠3 ˅ Y≠5:
o The log-direct : (¬bW˅ ¬x3) ˅ (bY˅ ¬x1

Y)

o The direct : ¬dW
3 ˅ ¬dY
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o Now Y = 5…

� A CSP constraint W ≤ 5
� The log-direct : bW˅x1

� The direct: dW
1 ˅ dW

2 ˅ dW
3 ˅ dW

4 ˅ dW
5

� Now W ≠5…



The Log-direct Encoding (4)

� Proposition 4
Unit propagation applied to the log-direct encoding is stronger
than to the log encoding.

1. If unit propagation commits to particular truth assignments
on the log encoding, then unit propagation commits to the
same truth assignments on the log-direct encoding.

2. If unit propagation generates the empty clause in the log
encoding then unit propagation generates the empty clause

12

encoding then unit propagation generates the empty clause
in the log-direct encoding then (but the reverse does not
necessarily hold).

� Proof: Similar to the proof of Theorem 15 [Walsh00]



The Log-order Encoding (1)
� Basic Idea

The order-direct encoding is the first such hierarchical
hybrid encoding, where the log encoding at level one has one
indicator variable bv dividing the domain into two subdomains
represented at level two with an order encoding by mean of
Boolean order variables.

� An assignment can be expressed 
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� An assignment can be expressed 



The Log-order Encoding (2)
� Proposition 5

The log-order encoding to index the domain values of some CSP
variable when encoding a CSP onto an equivalent SAT problem is
sound and complete.

� An illustration of the log-order encoding to encode a CSP
variable into SAT. b

v

1      0
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The Log-order Encoding (3)

� Proposition 6
The sparse encoding requires n-1 Boolean variables to encode a
CSP variable v with n domains whereas the log-order encoding
requires only n/2 Boolean variables.

� Proposition 7
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� Proposition 7

Unit propagation applied to the log-order encoding is
incomparable to the order encoding.

� Proof: Similar to Proposition 3 by giving an
appropriate example



Comparisons

� Comparison of different encodings regarding to the
number of variables and clauses required to encode a
CSP variable with n value into SAT

Methods # variables # clauses

direct n ~n2/2n ~n /2

log-direct ~n/2 ~n2/8

order n-1 ~n

log-order ~n/2 ~n/2



Experiments – Pigeon Hole Problems 
� Proving that n pigeons can not fit in n-1 holes.

Instance direct l.direct Speedup order l.order Speedup

11 18.2 0.8 22.8× 3.3 0.9 3.7××××

12 170.9 5.3 32.2× 15.2 4.2 3.8×

13 2,033.1 22.9 88.8 72.0 15.5 4.613 2,033.1 22.9 88.8× 72.0 15.5 4.6×

14 28,332.9 125.2 226.3× 1,013.4 65.8 15.4×

15 >86,400.0 661.2 >130.7× 7,394.6 232.2 31.8×

Min. 18.2 0.8 22.8× 3.3 0.9 3.7×

Max. >86,400.0 661.2 226.3× 7,394.6 232.2 31.8×

Average >7,638.8 163.1 >100.1×××× 1,699.7 63.7 11.9××××



Experiments – Graph Coloring Problems 
� Requiring an assignment of colors to the vertices of an

undirected graph, such that no two adjacent vertices share
the same color.

� The instances taken from [Color03]



Instance K direct l.direct Speedup order l.order Speedup

DSJC125.9 9 35.6 0.6 57.5× 0.7 0.5 1.4×
10 274.8 1.6 171.8× 2.3 1.3 1.8×
11 10,839.2 7.0 1548.5× 8.1 3.8 2.1×

DSJC250.9 9 71.9 5.4 13.1× 3.6 3.4 1.1×
10 376.8 9.2 41.0× 7.4 4.5 1.6×
11 11,150.8 213.8 52.2× 42.2 142.0 0.3×

miles750 9 15.6 0.3 58.0× 0.6 0.2 2.8×
10 187.5 0.7 267.9× 1.9 0.6 3.2×
11 3,214.1 4.5 714.2× 15.5 3.1 5.0×

miles1000 9 18.8 0.3 49.6× 0.4 0.3 1.1×
10 319.0 0.9 354.4× 3.0 0.9 3.3×
11 8,932.9 5.1 1751.5 21.0 3.9 5.4×

miles1500 9 26.8 0.6 44.8× 0.9 0.5 1.7×
10 463.4 1.3 356.5× 2.5 0.9 2.8×
11 11,295.2 6.8 1661.1× 20.7 3.6 5.8×

queen12_12 9 6.8 0.3 21.5× 0.5 0.2 2.5×
10 28.6 0.7 38.7× 1.7 0.7 2.2×
11 152.3 4.7 32.3× 5.2 3.9 1.3×

queen13_13 9 8.4 0.3 23.4× 0.7 0.3 2.4×
10 63.7 0.8 75.0× 1.9 0.9 2.1×
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10 63.7 0.8 75.0× 1.9 0.9 2.1×
11 473.7 4.7 99.7× 8.3 3.5 2.4×

queen14_14 9 11.75 0.4 28.7× 0.7 0.3 1.9×
10 141.4 0.9 157.1× 2.2 0.9 2.4×
11 967.3 4.8 201.0× 15.3 0.9 17.0×

queen15_15 9 19.6 0.4 49.0× 0.9 0.4 2.3×
10 214.9 1.1 195.4× 3.2 1.0 3.2×
11 1237.3 5.3 230.0× 15.3 4.0 3.8×

queen16_16 9 16.2 0.6 26.6× 0.6 0.5 1.2×
10 128.9 1.2 107.4× 3.7 1.1 3.4×
11 2,194.9 5.1 430.4× 60.4 5.1 11.8×

school1 9 44.6 1.6 27.6× 1.3 1.2 1.1×
10 345.7 4.5 76.8× 5.2 2.0 2.6×
11 3,858.0 10.2 378.2× 9.8 7.6 1.3×

2-FullIns 5 5 0.3 1.7 0.2× 2.0 0.2 8.8×
6 42.5 3,762.6 0.01× 4,842.5 16.0 301.5×

5-FullIns 7 0.7 6.9 0.1× 2.0 0.4 5.1×
8 109.65 3,966.7 0.01× 4,235.8 12.4 341.6×

Min. 0.3 0.3 0.01× 0.4 0.2 0.30×
Max. 11,295.2 3,966.7 1,751.5× 4,842.5 142.0 341.6×
Average 1,555.7 217.4 252.5× 252.7 6.3 20.6×



Experiments – Open Shop Problems 
� Finding the minimize the makespan such that given n jobs

and m workstations, each job has to be processed on a
workstation at least once

� The instances taken from [Taillard]



Instance M S/U direct l.direct Speedup order l.order Speedup

41 192 U 19.4 1.3 14.9× 0.09 0.15 0.6×
193 S 20.1 1.3 15.5× 0.17 0.23 0.7×

42 235 U 35.7 1.9 18.8× 0.11 0.22 0.5×
236 S 37.3 1.7 21.9× 0.14 0.20 0.7×

43 270 U 65.9 2.7 24.4× 0.25 0.31 0.8×
271 S 70.1 2.6 27.0× 0.16 0.24 0.7×

44 249 U 42.8 2.3 18.6× 0.17 0.29 0.6×
250 S 44.1 1.7 25.9× 0.16 0.25 0.6×

45 294 U 77.1 3.3 23.4× 0.19 0.35 0.5×
295 S 78.5 2.7 29.1× 0.12 0.20 0.6×

51 299 U 127.5 6.2 20.6 × 0.71 0.65 1.1×
300 S 126.7 7.1 17.8 × 0.72 0.69 1.0×

52 261 U 130.9 8.8 14.9× 0.84 0.99 0.8×
262 S 129.5 7.7 16.8× 0.75 0.59 1.3×

53 327 S 190.1 16.9 11.2× 0.57 1.1 0.5×
328 S 198.4 14.7 13.5× 2.0 1.8 1.1×
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328 S 198.4 14.7 13.5× 2.0 1.8 1.1×
54 309 U 257.8 17.4 14.8× 2.3 2.6 0.9×

310 S 176.6 13.5 13.1× 1.2 1.7 0.7×
55 325 U 408.6 20.8 19.6× 4.4 4.1 1.1×

326 S 174.2 19.0 9.2× 1.3 2.7 0.5×
71 436 S 252.2 130.0 1.9× 7.1 8.1 0.9×

437 S 296.4 161.0 1.8× 11.7 9.0 1.1×
72 444 S 213.4 168.9 1.3× 12.8 12.1 1.1×

445 S 265.6 144.2 1.8× 5.1 10.7 0.5×
73 470 S 669.1 349.3 1.9× 53.8 28.7 1.9×

471 S 750.6 482.9 1.6× 51.0 40.8 1.3×
74 463 S 637.1 271.5 2.3× 19.8 12.4 1.6×

464 S 275.5 160.7 1.7× 10.6 5.7 1.9×
75 416 S 268.3 142.0 1.9× 27.3 15.1 1.8×

417 S 320.4 99.7 3.2× 11.9 4.9 2.4×
Min. 19.4 1.3 1.3× 0.07 0.15 0.5×
Max. 750.6 482.9 29.1× 53.8 40.8 2.4×

Average 186.9 75.5 13.0×××× 6.1 5.1 1.0××××



Experiments – All Interval Serial Problems 
� Arranging a permutation of the n integers ranging from

differences between adjacent numbers are also a
permutation, of the numbers from 1 to n-1 [csplib]. 1 to n

� Finding all solutions

Instance direct l.direct Speedup order l.order Speedup SolInstance direct l.direct Speedup order l.order Speedup Sol

13 252.0 26.2 9.6× 6.0 18.3 0.3× 3200

14 1,787.5 162.5 11.0× 16.0 58.2 0.3× 9912

15 13,660.0 206.0 66.3× 52.7 265.8 0.2× 25592

16 >86,400.0 742.4 >116.4× 107.4 702.5 0.2× 55920

Min. 252.0 26.2 9.6× 6.0 18.3 0.2×

Max. >86,400.0 742.4 >116.4× 107.4 702.5 0.3×

Average >25,524.9 284.3 >50.8×××× 45.5 261.2 0.3××××



Conclusions

� Although we used only clasp solver, but similar results
were obtained for other solvers (lingeling, riss3G).

� The log-direct encoding (mentioned by [Velev07] but not
tested) significantly outperforms the direct encoding,
with runtime speedups of one to two order of magnitude
(increasing with the size of the instances).(increasing with the size of the instances).

� The log-order encoding, a hierarchical hybrid encoding
based on a new combination of simple encodings. In
general, the log-order encoding is comparable with the
order encoding.

� Two simple encoding with the powerful propagation



Future Works

� Further study the use of the log-direct and log-order 
encodings for a wide variety of real-life problems

� Features of these problems that might be more 
efficiently explored by the different encodings, namely 
with large domains, where more than one indicator 
variable at the first level of encoding might be more variable at the first level of encoding might be more 
suitable

� We will also develop a SAT-based CSP solver, like 
Sugar [Tamura09] with advanced improvements
[Metodi12]



Thank you for your attention!
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