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Introduction



Classical Logic and KR

As Robert Moore observed, classical logic is terrific for representing
incomplete information. For example:

• ∃x Loves(mary , x). But who?
∀x Duck(x) ⊃ Bird(x). What is the set of ducks?
On(A,B) ∨ On(A, table). But which?
¬AtSchool(mary) But where is she?

• But FOL is limited in the forms of inference that it permits.

• E.g. ask: Is Ralph, a raven, black?
• To derive this information, we can (effectively) only reason

from facts about Ralph, or general knowledge about ravens.

• Commonsense knowledge and reasoning are not like this.

• Often we want to obtain plausible conclusions, . . .
• . . . that fill in our incomplete information.
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Generic Statements

Observe: Most of the properties of objects or topics in everyday
life hold normally or usually or in general.

For example:

• “Ravens are black”.
Every raven? Albinos? A raven you’re told isn’t black?

• “Medication x is used to treat ailment y”
Always? What if the patient is allergic to x?.

• “John goes for coffee at 10:00”
Invariably? Even if he is sick or has a meeting?

• And similarly for everyday topics including trees, pens, games,
weddings, coffee, temporal persistence, etc.

+ In fact, in commonsense domains, there are almost no
interesting conditionals that hold universally.
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Types of Defaults

Call a statement of the form “P’s are Q’s” that allows exceptions
a default.

Types of defaults:

• Normality: Birds normally fly.

• Prototypicality: The prototypical apple is red.

• Statistical: Most students know CPR.

• Conventional: Stop for a red light.

• Persistence: Things tend to remain the same unless something
causes a change.

• And many others.



Nonmonotonic Reasoning

General Goal:

Given that P’s are normally Q’s, want to conclude Q(a)
given P(a), unless there is a good reason not to.

• Classical deduction clearly isn’t sufficient.
• For example, listing exceptional conditions doesn’t work:

∀x (P(x) ∧ ¬Ex1(x) ∧ · · · ∧ ¬Exn(x) ⊃ Q(x))

• We can’t list all exceptional conditions Ex1, . . . ,Exn, and
• We don’t want to have to prove ¬Ex1(a), . . . ,¬Exn(a) in

order to conclude Q(a).

+ Hence need theories of how plausible conclusions may be
drawn from uncertain, partial evidence.
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Nonmonotonic Reasoning

In the notation of FOL:

Monotonic: If Γ ` α then Γ,∆ ` α.
Non-monotonic: If Γ ` α, possibly Γ,∆ 6` α.

• Classical logic is monotonic.
• For nonmonotonic reasoning we will have to alter the classical

notions of validity and of proof.

• In nonmonotonic theories, an inference may depend on lack of
information.
• Hence a nonmonotonic inference may involve the theory as a

whole.

• A rule like P’s are (normally, usually) Q’s is commonly
referred to as a default, and the goal is to account for default
reasoning (not to be confused with Default Logic, which is a
specific approach).



Nonmonotonic Reasoning: Approaches

We’ll cover the following approaches:

Closed World Assumption Formalise the assumption that a fact is
false if it cannot be shown to be true.

Default Logic Augment classical logic with rules of the form α :β
γ .

Intuitively: If α is true and β is consistent with
what’s known then conclude γ.

Circumscription Formalise the notion that a predicate applies to as
few individuals as possible.
Then can write ∀x(P(x) ∧ ¬Ab(x) ⊃ Q(x)).

Nonmonotonic Inference Relations Formalise a notion of
nonmonotonic inference α |∼β.
Also expressed via a conditional logic, where a
default α⇒ β is an object in a theory.



Closed World Reasoning



Closed World Assumption

Observation: In a knowledge base, typically the number of positive
facts are overwhelmed by the negative facts.

• Thus, if we know the positive facts we don’t need to store the
negative facts.

• E.g. in an airline database, store facts like
DirectConnection(vancouver , frankfurt)

but not
¬DirectConnection(vancouver , dresden).

Closed-World Assumption (CWA) [Reiter, 1978]

If an atomic sentence is not known to be true, it can be
assumed to be false.
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CWA: Formalisation

Define a new version of entailment:

KB |=cwa α iff CWA(KB) |= α, where

CWA(KB) = KB ∪ {¬p | KB 6|= p where p is atomic.}

• Example: In a blocks world we might have:

KB = {On(a, b, s),On(b, table, s),On(c , table, s)}

With the CWA we can infer

¬On(a, a, s), ¬On(b, a, s) and ¬On(table, a, s).
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CWA and DCA

With the CWA and for
KB = {On(a, b, s),On(b, table, s),On(c , table, s)},

we cannot infer
∀x¬On(x , a, s).

• Reason: There may be some (unnamed) x that is on a.

Domain-closure assumption (DCA): Often we can assume (or we
know) that the only objects are the named objects.

• In the above, this would amount to
∀x [Block(x) ≡ (x = a ∨ x = b ∨ x = c)]

• With the DCA we can infer
∀x¬On(x , a, s).

+ Note that we would not want to apply the DCA to s.
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Query evaluation with the CWA+DCA

• With the CWA and DCA, entailment becomes easy.

• Let |=cd be entailment under the CWA and DCA, and let α
and β be in negation normal form.
Then

• KB |=cd α ∧ β iff KB |=cd α and KB |=cd β
• KB |=cd α ∨ β iff KB |=cd α or KB |=cd β
• KB |=cd ∀x α iff KB |=cd α[x/c] for every c in the KB.
• KB |=cd ∃x α iff KB |=cd α[x/c] for some c in the KB.

• Reduces to KB |=cd ` where ` is a literal.

• If atoms are stored in a table, this reduces to table lookup.

• To handle equality, need the unique names assumption (UNA):
For distinct constants c, d , assume that (c 6= d).



Consistency of the CWA

• Consider where KB |= p ∨ q but KB 6|= p and KB 6|= q.

• Then CWA(KB) = KB ∪ {¬p,¬q}
• But this is inconsistent!

• One solution: Generalised closed world assumption (GCWA).

GCWA(KB) = KB ∪ {¬p |
if KB |= p ∨ q1 ∨ · · · ∨ qn

then KB |= q1 ∨ · · · ∨ qn }
• Obtain:

• GCWA(KB) is consistent if KB is.
• If GCWA(KB) |= α then CWA(KB) |= α.
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Complexity

• Propositional CWA deduction can be done with O(log m) calls
to an NP oracle.

• Hence the problem is in PNP[O(log n)].

• Propositional GCWA deduction can be done with O(log m)
calls to ΣP

2 oracle.

• Hence the problem is in PΣP
2 [O(log n)].

• Reference: [Eiter and Gottlob, 1993].



CWA: Concluding Points

• FO CWA is noncomputable (since it appeals to 6`).

• We have the theorem:

If KB is Horn and consistent, then CWA(KB) is
consistent.

• CWA (and DCA) rely on the syntactic form of the theory.
• E.g. replace On by Off in the block’s world example, and you

get exactly the opposite assertions.

• CWA (+ DCA and UNA) is fundamental in deductive and
(implicitly) relational database theory, as well as in logic
programming.



Default Logic



Default Logic

Default Logic (DL) [Reiter, 1980] is probably the best-known and
most studied approach to NMR.

• Reiter’s intuition:
Default reasoning “corresponds to the process of
deriving conclusions based on patterns of inference
of the form ‘in the absence of information to the
contrary, assume . . . ’ ”.

• Informally:
• With the CWA, negated ground atoms are added to a KB.
• In DL, formulas are added to a KB based on what’s known and

not known.



Default Rules

• In classical logic, inference rules sanction the derivation of a
formula based on other formulas that have been derived.

• Defaults in DL are like domain-specific inference rules, but
with an added consistency condition.

• E.g.: “University students are normally adults” can be
expressed by

UnivSt(x) : Adult(x)

Adult(x)

First approximation: If UnivSt(c) is true for ground term c
and Adult(c) is consistent, then Adult(c) can be derived “by
default”.



Default Rules and Extensions

Problem: How to characterize default consequences?

Consider a default rule α :β
γ .

• Intuition:
γ can be derived if α has been derived and β is consistent.

• Question:
Consistent with what?

• Reiter’s answer:
Consistent with the full set of formulas that can be
justified by classical reasoning and application of
default rules.

• Such a set of sentences is called an extension.
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Basic Definitions

A default is an expression of the form

α : β1, . . . , βn

γ

where α, βi , γ are formulas of first order (or propositional) logic.

• α is the prerequisite

• β1, . . . , βn are justifications
• We’ll stick with n = 1.

• γ is the consequent.

A default theory is a pair (W ,D) where W is a set of sentences of
first order (or propositional) logic and D is a set of defaults.



More Basic Definitions

A default is closed if it contains no free variables among its
formulas; otherwise it is open.

• An open default will stand for its set of ground instances.

• So we can assume that we are (effectively) dealing with a
closed default theory.



Default Extensions

A default theory (W ,D) induces a set of extensions, where an
extension is a “reasonable” set of beliefs based on (W ,D).

Reiter lists the following desirable properties of any extension E :

1 Since W is certain, we require W ⊆ E .

2 E is deductively closed, that is, E = Cn(E ).

3 A maximal set of defaults is applied.

So for α :β
γ ∈ D, if α ∈ E and ¬β 6∈ E then γ ∈ E .

Unfortunately minimality wrt 1–3 doesn’t give a satisfactory
definition of an extension.

• E.g. for (∅, { :α
α }), E = Cn(¬α) satisfies 1–3.



Default Extensions

A default theory (W ,D) induces a set of extensions, where an
extension is a “reasonable” set of beliefs based on (W ,D).

Reiter lists the following desirable properties of any extension E :

1 Since W is certain, we require W ⊆ E .

2 E is deductively closed, that is, E = Cn(E ).

3 A maximal set of defaults is applied.

So for α :β
γ ∈ D, if α ∈ E and ¬β 6∈ E then γ ∈ E .

Unfortunately minimality wrt 1–3 doesn’t give a satisfactory
definition of an extension.

• E.g. for (∅, { :α
α }), E = Cn(¬α) satisfies 1–3.



Default Extensions

A default theory (W ,D) induces a set of extensions, where an
extension is a “reasonable” set of beliefs based on (W ,D).

Reiter lists the following desirable properties of any extension E :

1 Since W is certain, we require W ⊆ E .

2 E is deductively closed, that is, E = Cn(E ).

3 A maximal set of defaults is applied.

So for α :β
γ ∈ D, if α ∈ E and ¬β 6∈ E then γ ∈ E .

Unfortunately minimality wrt 1–3 doesn’t give a satisfactory
definition of an extension.

• E.g. for (∅, { :α
α }), E = Cn(¬α) satisfies 1–3.



Default Extensions

A default theory (W ,D) induces a set of extensions, where an
extension is a “reasonable” set of beliefs based on (W ,D).

Reiter lists the following desirable properties of any extension E :

1 Since W is certain, we require W ⊆ E .

2 E is deductively closed, that is, E = Cn(E ).

3 A maximal set of defaults is applied.

So for α :β
γ ∈ D, if α ∈ E and ¬β 6∈ E then γ ∈ E .

Unfortunately minimality wrt 1–3 doesn’t give a satisfactory
definition of an extension.

• E.g. for (∅, { :α
α }), E = Cn(¬α) satisfies 1–3.



Default Extensions

A default theory (W ,D) induces a set of extensions, where an
extension is a “reasonable” set of beliefs based on (W ,D).

Reiter lists the following desirable properties of any extension E :

1 Since W is certain, we require W ⊆ E .

2 E is deductively closed, that is, E = Cn(E ).

3 A maximal set of defaults is applied.

So for α :β
γ ∈ D, if α ∈ E and ¬β 6∈ E then γ ∈ E .

Unfortunately minimality wrt 1–3 doesn’t give a satisfactory
definition of an extension.

• E.g. for (∅, { :α
α }), E = Cn(¬α) satisfies 1–3.



Default Extensions: Definition

Reiter’s definition:

Let (W ,D) be a default theory. The operator Γ assigns to every
set S of formulas the smallest set S ′ of formulas such that:

1 W ⊆ S ′

2 S ′ = Cn(S ′)

3 If α :β
γ ∈ D and α ∈ S ′ and ¬β 6∈ S then γ ∈ S ′.

A set E is an extension for (W ,D) iff Γ(E ) = E .
+ That is, E is a fixed point of Γ.

1 guarantees that the given facts are in the extension.

2 states that beliefs are deductively closed.

3 has the effect that as many defaults as possible (with respect
to the extension) are applied.



Another Definition

Reiter gives an equivalent “pseudo-iterative” definition of an
extension:

For default theory (W ,D) define:

E0 = W

Ei+1 = Cn(Ei ) ∪
{
γ | α : β

γ
∈ D and α ∈ Ei and ¬β 6∈ E

}
for i ≥ 0

Then E is an extension for (W ,D) iff E =
⋃∞

i=0 Ei .

• With this definition, it is straightforward to verify whether a
given set of formulas constitutes an extension.



Example

Notation: For extension E of (W ,D), let

∆E = {γ | α :β
γ ∈ D, α ∈ E ,¬β 6∈ E}

• Consider:

W = {Bird(tweety),Bird(opus),¬Fly(opus)}

D =
{

Bird(x) : Fly(x)
Fly(x)

}
• One extension E where ∆E = {Fly(tweety)}.



Another Example

• Consider:
W = {Republican(dick),Quaker(dick)}

D =
{

Republican(x) :¬Pacifist(x)
¬Pacifist(x) , Quaker(x) : Pacifist(x)

Pacifist(x)

}
• Two extensions:

∆E1 = {¬Pacifist(dick)}
∆E2 = { Pacifist(dick)}

• What to believe?

First approximation:

Credulous: Choose an extension arbitrarily
Skeptical: Intersect the extensions.
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Yet Another Example

• Consider:
W = {Bat(tweety) ∨ Bird(tweety)}

D =
{

Bat(x) : Fly(x)
Fly(x) , Bird(x) : Fly(x)

Fly(x)

}
• One extensions E = Cn(W ).

• So, no reasoning by cases.



More Examples

• W = ∅, D =

{
> : a

¬a

}
No extensions.

• “Closed world assumption” for predicate P:

• Represent as : ¬P(x)
¬P(x) .

• If W = {P(a) ∨ P(b)},
• DL yields 2 extensions;
• CWA yields inconsistency.



More Examples

• W = ∅, D =

{
> : a

¬a

}
No extensions.

• “Closed world assumption” for predicate P:

• Represent as : ¬P(x)
¬P(x) .

• If W = {P(a) ∨ P(b)},
• DL yields 2 extensions;
• CWA yields inconsistency.



Normal Default Theories

• Most often, default rules have the same justification and
consequent.

• A rule of the form α :β
β is a normal default rule.

• Normal default theories have nice properties.

Let (W ,D) be a normal default theory. Then:
• (W ,D) has an extension.
• If (W ,D) has extensions E1, E2 and E1 6= E2, then E1 ∪ E2 is

inconsistent.
• Semi-monotonicity: If E is an extension of (W ,D) and D ′ is a

set of normal defaults, then (W ,D ∪ D ′) has an extension E ′

where E ⊆ E ′.
• Also an extension can be specified iteratively.
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Semi-Normal Defaults

So why not just stick with normal default theories?

• Problem:

• typically university students are adults: S(x) : A(x)
A(x)

• typically adults are employed: A(x) : E(x)
E(x)

• typically university students are not employed: S(x) : ¬E(x)
¬E(x)

• For W = {S(sue)}, get 2 extensions, one with E (sue) and
one with ¬E (sue).
• Want just the second extension, with ¬E (sue).

• Solution: block transitivity with rule:

A(x) : ¬S(x) ∧ E (x)

E (x)
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Semi-Normal Defaults

• A default of the form α :β∧γ
β is semi-normal.

• Semi-normal defaults are required for interacting defaults, as
in the last example.

• For semi-normal defaults:
• We may not have an extension
• We lack semi-monotonicity
• The proof theory appears considerably more complex



DL and Other Approaches

DL and Autoepistemic Logic:

• Autoepistemic Logic (AEL) [Moore, 1985] was developed as
an account of how an ideal reasoner may form beliefs,
reasoning about its beliefs and non-beliefs.

• Uses a modal approach: Bα read as “α is believed”.

• Belief set E of an agent should satisfy 3 properties:

1 Cn(E ) = E .
2 If α ∈ E then Bα ∈ E .
3 If α 6∈ E then ¬Bα ∈ E .



Autoepistemic Logic

• Leads to the notion of (grounded) stable expansions.

• E is a grounded stable extension of KB iff E is a minimal set
wrt nonmodal formulas such that

γ ∈ E iff KB ∪∆ |= γ where
∆ = {Bα | α ∈ E} ∪ {¬Bα | α 6∈ E}.

• So, another fixed-point definition.

• Shown in [Denecker et al., 2003] to have deep connections to
DL, wherein expansions correspond to extensions.
• Roughly: AEL and DL can be generalised to sets of

approaches, with a 1-1 correspondence between approaches.
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DL and Other Approaches

DL and Answer Set Programming (ASP):

• Reference: [Gelfond, 2008]

• A (normal) answer set program is a set of rules of the form:

l0 ← l1, . . . , ln, not ln+1, . . . , not lm

where the li ’s are literals.

• An answer set for a program is (roughly) a minimal set of
literals such that for every rule, if the positive part of the
body is in the set and the negative part isn’t, then the head is.

• ASP shows great promise in applications, and
implementations are competitive with the best SAT solvers.



Answer Set Programming

• Let (W ,D) be a a default theory where
• each element of W is a ground fact and
• each rule of D is of the form

l1 ∧ · · · ∧ ln : ln+1, . . . , lm
l0

where li , 0 ≤ i ≤ m, is a literal.

• There is an AS program Π where rules as above are mapped to

l0 ← l1, . . . , ln, not l̄n+1, . . . , not l̄m

and l ∈W maps to l ←.

• Then ([Gelfond and Lifschitz, 1991])
• For AS X of Π, Cn(X ) is an extension of (W ,D)
• For extension E of (W ,D), the literals in E are an AS of Π.



Concluding Points

• For propositional DL:
• Deciding extension existence is ΣP

2 -complete.
• Deciding credulous inference is ΣP

2 -complete.
• Deciding skeptical inference is ΠP

2 -complete.
• The latter 2 results hold for normal default theories.
• Reference: [Gottlob, 1992].

• Previously, meaningful practical applications of DL have been
lacking; this is changing with the advent of ASP.



Circumscription



Circumscription

Introduced by John McCarthy, with many results obtained by
Vladimir Lifschitz.

• See [McCarthy, 1980], [McCarthy, 1986], [Lifschitz, 1994].

General Idea: Want to be able to say that the extension of a
predicate is as small as possible.

• Then, for “university students are normally adults” can write:
∀x(S(x) ∧ ¬Ab(x) ⊃ A(x))

• Circumscribing Ab yields that Ab applies to as few individuals
as possible.

• If we have S(sue) and circumscribing Ab yields ¬Ab(sue) we
can conclude A(sue).

• Circumscription can be specified semantically or syntactically.
+ We’ll focus on the semantic side.
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Circumscription: Intuitions

• In classical logic, all models of a theory have the same status.

• In circumscribing P, we prefer those models of P with smaller
extensions.

• E.g., if we knew only that
∃xP(x)

we would expect the circumscription of P to entail
∃x∀y(P(y) ≡ (x = y)).

• If we knew only that
P(a) ∨ P(b)

we would expect the circumscription of P to entail
(∀xP(x) ≡ x = a) ∨ (∀xP(x) ≡ x = b).
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Minimal Entailment

Let P be a set of predicates.
Let I1 = (D1, I1), I2 = (D2, I2) be two interpretations.

Define I1 ≤P I2, read I1 is at least as preferred as I2, if

1 D1 = D2,

2 I1[X ] = I2[X ] for every predicate symbol X not in P.

3 I1[P] ⊆ I2[P] for every P ∈ P.

I1 <P I2 iff: I1 ≤P I2 but not I2 ≤P I1.

Define a new version of entailment |=≤ by:
KB |=≤P α iff for every I where I |= KB and

6 ∃I ′ s.t. I ′ <P I and I ′ |= KB,
then I |= α.



Minimal Entailment

Let P be a set of predicates.
Let I1 = (D1, I1), I2 = (D2, I2) be two interpretations.

Define I1 ≤P I2, read I1 is at least as preferred as I2, if

1 D1 = D2,

2 I1[X ] = I2[X ] for every predicate symbol X not in P.

3 I1[P] ⊆ I2[P] for every P ∈ P.

I1 <P I2 iff: I1 ≤P I2 but not I2 ≤P I1.

Define a new version of entailment |=≤ by:
KB |=≤P α iff for every I where I |= KB and

6 ∃I ′ s.t. I ′ <P I and I ′ |= KB,
then I |= α.



Examples

• KB = {P(a) ∧ P(b) }

KB |=≤P
∀x(P(x) ≡ (x = a ∨ x = b))

• KB = { ∀x(Q(x) ⊃ P(x)) }

KB |=≤P
∀x(Q(x) ≡ P(x))
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Problematic Example 1

KB = { ∀x(Bird(x) ∧ ¬Ab(x) ⊃ Fly(x)),

∀x(Penguin(x) ⊃ ¬Fly(x)),

∀x(Penguin(x) ⊃ Bird(x)) }

• Note that KB |= ∀x(Penguin(x) ⊃ Ab(x))

• Get:

KB |=≤Ab
∀x(Ab(x) ≡ [Penguin(x)∨(Bird(x)∧¬Fly(x))])

• Can’t conclude Fly by default for an individual.



Problematic Example 1: Solution

Intuition: Allow some predicates to vary (such as Fly) in
minimising a predicate (such as Ab).

Modify the definition:

Let P, Q be sets of predicates.

For I1 = (D1, I1), I2 = (D2, I2), define I1 ≤P,Q I2, if

1 D1 = D2,

2 I1[X ] = I2[X ] for every predicate symbol X not in P ∪Q.

3 I1[P] ⊆ I2[P] for every P ∈ P.
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Examples

• Now minimizing Ab and letting Fly vary gives

∀x(Ab(x) ≡ Penguin(x))

So, the only abnormal things are penguins.

• KB = { ∀x(S(x) ∧ ¬Ab(x) ⊃ A(x)),
S(sue), S(yi), ¬A(sue) ∨ ¬A(yi) }

KB |=≤Ab
A(sue) ∨ A(yi).

+ We don’t get this result in the simpler formulation.
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Problematic Example 2

KB = { ∀x(Bird(x) ∧ ¬Ab1(x) ⊃ Fly(x)),

∀x(Penguin(x) ∧ ¬Ab2(x) ⊃ ¬Fly(x)),

∀x(Penguin(x) ⊃ Bird(x)),

Penguin(opus) }

• Circumscribing with P = {Ab1,Ab2}, Q = {Fly} we obtain
Ab1(opus) ∨ Ab2(opus), and not ¬Fly(opus).

+ So specificity is not handled.

• Solution [Lifschitz, 1985]: Prioritized circumscription.
• Give a priority order for circumscription.
• In the above, we would circumscribe Ab2, then Ab1.



Syntactic Characterisation

Circumscription can also be described syntactically.

• I.e. given a sentence KB, the circumscription produces a
logically stronger sentence KB∗.

• Done in terms of a formula of second-order logic.

• We will just consider the basic case of circumscribing a single
predicate.



Circumscription Schema

Notation: Let P and Q be predicates of the same arity.

P ≡ Q abbreviates ∀x̄(P(x̄) ≡ Q(x̄)).
P ≤ Q abbreviates ∀x̄(P(x̄) ⊃ Q(x̄)).
P < Q abbreviates (P ≤ Q) ∧ ¬(Q ≤ P).

Let KB(P) be a formula containing P, and let p be a predicate
variable of same arity as P.

The circumscription of P in KB(P) is the second-order formula:

KB(P) ∧ ¬∃p(KB(p) ∧ p < P).

where KB(p) is the result of replacing every occurrence of P in
KB with p.
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Circumscription Schema

For the circumscription of P in KB(P)

KB(P) ∧ ¬∃p(KB(p) ∧ p < P),

we have that:

• KB(P) guarantees that the circumscription has all the
properties of the original formula;

• the conjunct ¬∃p(KB(p) ∧ p < P) says that there is no
predicate p such that
• p satisfies what P does, and
• the extension of p is a proper subset of that of P.

I.e. P is minimal with respect to KB(P).



Circumscription Schema: Notes

• The syntactic approach can be shown to capture the same
results as minimal models.

• The definition can be extended to deal with sets of predicates,
varying predicates, and priorities among predicates.

• Issue: Determining cases where the schema can be expressed
as a formula of first-order logic.



Concluding Points

• The deduction problem for propositional circumscription,

viz. does Circ(A;P;Q) |= α?

is ΠP
2 -complete [Eiter and Gottlob, 1993].

• It is not clear that abnormality theories are adequate for
dealing with defaults per se.

• However, circumscription has found numerous applications, in
areas such as
• reasoning about action (and dealing with persistence) and
• diagnosis.
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Concluding Points

• Circumscription (like Default Logic) isn’t a logic of defaults
per se, but rather provide a mechanism wherein default
reasoning may be encoded.

• E.g. for variable circumscription, need to decide what
predicates to allow to vary.

• Hard to ensure that the “right” conclusions are obtained in all
circumstances.



Defaults as Objects:

Nonmonotonic Inference Relations/
Conditional Logics



Introduction

Motivation: In DL and circumscription, default theories have to be
hand-coded.

• This suggests studying nonmonotonicity as an abstract
phenomenon.

Two broad approaches:

Nonmonotonic Inference Relations Analogously to classical
inference, α ` β, consider properties of a
nonmonotonic inference relation α |∼β.

Conditional Logics Analogously to material implication, α ⊃ β,
consider properties of a default conditional α⇒ β
added to classical logic.

+ These approaches basically coincide; we’ll focus on the first.
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Nonmonotonic Inference Relations
[Kraus et al., 1990]

Intuition:

• In classical logic, α |= β just when β is true in all models of α.

• The inference relation α |∼β expresses that β is true in all
preferred models of α.

Obvious question:

• How do we specify the notion of “preferred model”?

Answer:

• This is given by a partial preorder over interpretations.

• Then α |∼β just if β is true in the minimal models of α.
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Nonmonotonic Inference Relations
[Kraus et al., 1990]

Intuition:

• In classical logic, α |= β just when β is true in all models of α.

• The inference relation α |∼β expresses that β is true in all
preferred models of α.

Obvious question:

• How do we specify the notion of “preferred model”?

Answer:

• This is given by a partial preorder over interpretations.

• Then α |∼β just if β is true in the minimal models of α.



NMIR: Semantics

• L is the language of PC, with atomic sentences
P = {a, b, c, . . . } and the usual connectives.

• Ω is the set of interpretations of L.

• Define ‖α‖ = {w ∈ Ω | w |= α}.
• � is a preference relation on interpretations of L.

• � is reflexive and transitive.

• Define

min(‖α‖) =
{

w ∈ ‖α‖ |6 ∃w ′ ∈ Ω s.t. w ′ ≺ w and w ′ |= α
}
.

• Then
α |∼β just if min(‖α‖) ⊆ ‖β‖.



Proof Theory

Consider the following properties of NMIRs:

REF α |∼α.
LLE If |= α ≡ β and α |∼γ then β |∼γ.
RW If |= β ⊃ γ and α |∼β then α |∼γ.

AND If α |∼β and α |∼γ then α |∼β ∧ γ.
OR If α |∼γ and β |∼γ then α ∨ β |∼γ.
CM If α |∼β and α |∼γ then α ∧ β |∼γ.

Obtain:
|∼ is a preferential inference relation iff it satisfies REF– CM.

Aside: In a conditional logic, we would have axioms like:

(α⇒ β ∧ α⇒ γ) ⊃ α ∧ β ⇒ γ.

in place of CM.



Examples

• Let Γ = {B |∼F , B |∼W , P |∼B, P |∼¬F}
• Γ is non-trivially satisfiable.

• From Γ can infer

• B ∧W |∼ F
• B ∧ P |∼ ¬F
• B |∼ ¬P

• However from Γ cannot infer

• B ∧ Gr |∼F
• P |∼W

• Basically at this point, while we have a “logic of defaults” we
do not have an adequate system for default inference.

+ Can’t handle irrelevant properties like Gr in B ∧ Gr |∼F .
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Rational Closure

• As noted, we don’t actually have a nonmonotonic system.

• [Lehmann and Magidor, 1992] defines the rational closure of a
KB

• Roughly: Given a KB, determine the preference relation where
formulas are ranked “as low as possible”.

• This is done wrt a stronger system, that incorporates rational
monotonity.

RM If α |∼γ and α 6 |∼¬β then α ∧ β |∼γ.

• Semantically this axiom enforces a total preorder on
interpretations.



Rational Closure

• Define β ≺ α iff (α ∨ β) |∼ ¬α.
• Given an understood NM theory T , the degree of a formula is

defined by:

1 deg(α) = 0 iff for no β do we have β ≺ α.
2 deg(α) = i iff deg(α) is not less than i and for every β such

that β ≺ α we have deg(β) < i .
3 deg(α) =∞ iff α is not assigned a degree above.

• The rational consequence relation wrt T is given by:

α |∼Rβ iff

deg(α ∧ β) < deg(α ∧ ¬β) or

deg(α) =∞.
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Example

For

B |∼F , B |∼W , P |∼B, P |∼¬F

in the rational closure we have:

B ∧ Gr |∼RF , P ∧ Gr |∼R¬F .



Limitations

Two major weaknesses with the rational closure:

• Can’t inherit properties across exceptional subclasses.

• E.g. can’t conclude that P |∼R W even though we have P |∼B
and B |∼W .

• Undesirable specificities are sometimes obtained. For example:

• Add to our example L |∼C (large animals are calm).

• Get that deg(L) = deg(L ∧ ¬P) = 0 and
deg(P) = deg(L ∧ P) = 1.

• Hence deg(L ∧ ¬P) < deg(L ∧ P), and obtain that L |∼R¬P.
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Implementing the Rational Closure:
System Z [Pearl, 1990]

Idea: A set of default conditionals R is partitioned into a list of
mutually exclusive sets of rules R0, . . . ,Rn.

• Lower ranked rules are more normal (or less specific) than
higher ranked rules.

• Rules in higher-ranked sets conflict in some fashion with rules
in lower-ranked sets.

• The ordering is determined by treating rules as material
conditionals, and using standard propositional satisfiability.

• This ordering on rules induces an ordering on models.

• α 1-entails β given R, written α `1 β, if the least α ∧ β
models are less than the least α ∧ ¬β models.

• 1-entailment corresponds with the rational closure.



Example

For

R = {B ⇒ F , B ⇒W , P ⇒ B, P ⇒ ¬F , P ∧ L⇒ F}

we obtain:

R0 = {B ⇒ F , B ⇒W }
R1 = {P ⇒ B, P ⇒ ¬F}
R2 = {P ∧ L⇒ F}



Concluding Points

• Deciding membership in the rational closure can be done with
O(log R) calls to an NP oracle.
• Thus the problem is in PNP[O(log R)].

• Despite the mentioned limitations, this work spurred a great
deal of interest and research.

• While the focus has been on NMIR’s, there are arguments in
favour of using a conditional logic formulation.
• E.g. In a NMIR, quantification is problematic, whereas there is

no problem in principle with quantification in a conditional
logic.



Concluding Remarks



Concluding Remarks

Further Issues
While research in “classical” nonmonotonic reasoning has
decreased since it’s height in the late 1980’s and 1990’s, there are
still plenty of open issues.



Defaults and the Real World

• Most NM approaches provide mechanisms whereby various
phenomena can be encoded.

• We still don’t have a comprehensive theory of defaults, as
things existing in the “real world”.

• Partial exception: conditional logics.
• But no approach is fully adequate for reasoning with defaults.
• (See [Delgrande, 2011] for more.)

• Other types of defaults, such as deontics, counterfactuals,
etc.?



First-Order Defaults

• Default logic and circumscription are most appropriate for
reasoning about individuals.

• For the first order case they are either lacking (DL) or
inadequate (circ) for dealing with quantification.

+ Basically, we don’t have a good theory of first-order
defaults.

• Example problem (with suggestive notation):

∀x , y Elephant(x) ∧ Keeper(y) → Likes(x , y)

∀x Elephant(x) ∧ Keeper(Fred) → ¬Likes(x ,Fred)

Elephant(Clyde) ∧ Keeper(Fred) → Likes(Clyde,Fred)
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inadequate (circ) for dealing with quantification.

+ Basically, we don’t have a good theory of first-order
defaults.

• Example problem (with suggestive notation):
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NMR and Belief Revision

• The area of belief change is an important subarea and, in
many aspects, largely unexplored.

• [Gärdenfors and Makinson, 1994] shows a strong connection
between preferential reasoning and belief revision.

• As well, the Ramsey Test gives an appealing connection
between BR and NMR:

An agent accepts a default α→ β just if, in revising
its beliefs by α it comes to believe β.

• General issue: What is the connection between NMR and BR?
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