
Foundations of DKS

Foundations of Data and Knowledge Systems
EPCL Basic Training Camp 2012

Part One

Thomas Eiter and Reinhard Pichler

Institut für Informationssysteme
Technische Universität Wien

19 December, 2012

Thomas Eiter and Reinhard Pichler 19 December, 2012 1/45

Foundations of DKS

Outline

1. General Information

2. Predicate Logic
2.1 Query Languages and Logic
2.2 Syntax of First-Order Predicate Logic
2.3 Semantics of First-Order Predicate Logic
2.4 Equality
2.5 Undecidability
2.6 Model Cardinalities

Thomas Eiter and Reinhard Pichler 19 December, 2012 2/45

Foundations of DKS 1. General Information

Course overview

Focus: Foundations of Rule-based Query Answering
Syntax of First-Order Predicate Logic
Some Fragments of First-Order Predicate Logic
Fundamentals of Classical Model Theory
Declarative Semantics of Rule Languages
Operational Semantics of Rule Languages
Complexity and Expressive Power

Thomas Eiter and Reinhard Pichler 19 December, 2012 3/45

Foundations of DKS 1. General Information

Literature

Basic reading
This course is mainly based on the following article:
François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg Gottlob,
Clemens Ley, Benedikt Linse, Reinhard Pichler, Fang Wei:
Foundations of Rule-Based Query Answering. Reasoning Web 2007,
Lecture Notes in Computer Science 4636: pp. 1 – 153, Springer (2007).

Further references
Further references will be provided as we go along, e.g.:
Alexander Leitsch: The Resolution Calculus, Texts in Theoretical Computer
Science, Springer-Verlag Berlin, Heidelberg, New York, 1997.

Thomas Eiter and Reinhard Pichler 19 December, 2012 4/45

Foundations of DKS 1. General Information

Literature

Basic reading
This course is mainly based on the following article:
François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg Gottlob,
Clemens Ley, Benedikt Linse, Reinhard Pichler, Fang Wei:
Foundations of Rule-Based Query Answering. Reasoning Web 2007,
Lecture Notes in Computer Science 4636: pp. 1 – 153, Springer (2007).

Further references
Further references will be provided as we go along, e.g.:
Alexander Leitsch: The Resolution Calculus, Texts in Theoretical Computer
Science, Springer-Verlag Berlin, Heidelberg, New York, 1997.

Thomas Eiter and Reinhard Pichler 19 December, 2012 4/45

Foundations of DKS 2. Predicate Logic 2.1 Query Languages and Logic

Outline

1. General Information

2. Predicate Logic
2.1 Query Languages and Logic
2.2 Syntax of First-Order Predicate Logic
2.3 Semantics of First-Order Predicate Logic
2.4 Equality
2.5 Undecidability
2.6 Model Cardinalities

Thomas Eiter and Reinhard Pichler 19 December, 2012 5/45

Foundations of DKS 2. Predicate Logic 2.1 Query Languages and Logic

Query Languages and Logic

Motivation

Foundations of query languages mostly stem from logic
(and complexity theory)
New query languages with new syntactical constructs and concepts depart
from classical logic but keep a logical flavour.
Typical strengths of this logical flavour are:

• compound queries using connectives such as “and” and “or”
• rules expressed as implications
• declarative semantics reminiscent of Tarski’s model semantics
• query optimisation based on equivalences of logical formulas

Thomas Eiter and Reinhard Pichler 19 December, 2012 6/45

Foundations of DKS 2. Predicate Logic 2.1 Query Languages and Logic

What are Query Languages?

Tentative Definitions

1 What are . . . their purposes of use?
selecting and retrieving data from “information systems”

2 What are . . . their programming paradigms?
declarative, hence mostly related to logic

3 What are . . . their major representatives?
SQL, Datalog (relational data),
XPath, XQuery (XML data),
SPARQL (RDF data, OWL ontologies)

4 What are . . . their research issues?
declarative semantics, procedural semantics, complexity and expressive
power, implementations, optimisation, etc.

Thomas Eiter and Reinhard Pichler 19 December, 2012 7/45

Foundations of DKS 2. Predicate Logic 2.1 Query Languages and Logic

What are Query Languages?

Tentative Definitions

1 What are . . . their purposes of use?
selecting and retrieving data from “information systems”

2 What are . . . their programming paradigms?
declarative, hence mostly related to logic

3 What are . . . their major representatives?
SQL, Datalog (relational data),
XPath, XQuery (XML data),
SPARQL (RDF data, OWL ontologies)

4 What are . . . their research issues?
declarative semantics, procedural semantics, complexity and expressive
power, implementations, optimisation, etc.

Thomas Eiter and Reinhard Pichler 19 December, 2012 7/45

Foundations of DKS 2. Predicate Logic 2.1 Query Languages and Logic

Logic vs. Logics

The development of logic(s)

starting in antiquity: logic as an activity of philosophy aimed at analysing
rational reasoning.
late 19th century: parts of logic were mathematically formalised.
early 20th century: logic used as a tool in a (not fully successful) attempt
to overcome a foundational crisis of mathematics.
logic in computer science: Today, logic provides the foundations in many
areas of computer science, such as knowledge representation, database
theory, programming languages, and query languages.
Key features of logic: the use of formal languages for representing
statements (which may be true or false) and the quest for computable
reasoning about those statements.
Logic vs. logics: “Logic” is the name of the scientific discipline investigating
such formal languages for statements, but any of those languages is also
called “a logic”

– logic investigates logics.

Thomas Eiter and Reinhard Pichler 19 December, 2012 8/45

Foundations of DKS 2. Predicate Logic 2.1 Query Languages and Logic

Logic vs. Logics

The development of logic(s)

starting in antiquity: logic as an activity of philosophy aimed at analysing
rational reasoning.
late 19th century: parts of logic were mathematically formalised.
early 20th century: logic used as a tool in a (not fully successful) attempt
to overcome a foundational crisis of mathematics.
logic in computer science: Today, logic provides the foundations in many
areas of computer science, such as knowledge representation, database
theory, programming languages, and query languages.
Key features of logic: the use of formal languages for representing
statements (which may be true or false) and the quest for computable
reasoning about those statements.
Logic vs. logics: “Logic” is the name of the scientific discipline investigating
such formal languages for statements, but any of those languages is also
called “a logic” – logic investigates logics.

Thomas Eiter and Reinhard Pichler 19 December, 2012 8/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Outline

1. General Information

2. Predicate Logic
2.1 Query Languages and Logic
2.2 Syntax of First-Order Predicate Logic
2.3 Semantics of First-Order Predicate Logic
2.4 Equality
2.5 Undecidability
2.6 Model Cardinalities

Thomas Eiter and Reinhard Pichler 19 December, 2012 9/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Symbols

Symbols in First-Order Predicate Logic
First-order predicate logic is not just a single formal language, because some of
its symbols may depend on the intended application.

The symbols common to all languages of first-order predicate logic are
called logical symbols.
The symbols that are specified in order to determine a specific language are
called the signature (or vocabulary) of that language.

Definition (Signature)

A signature or vocabulary for first-order predicate logic is a pair
L =

(
{Funn

L}n∈N, {Rel
n
L}n∈N

)
of two families of computably enumerable

symbol sets, called n-ary function symbols of L and n-ary relation symbols or
predicate symbols of L.
The 0-ary function symbols are called constants of L. The 0-ary relation
symbols are called propositional relation symbols of L.

Thomas Eiter and Reinhard Pichler 19 December, 2012 10/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Symbols

Symbols in First-Order Predicate Logic
First-order predicate logic is not just a single formal language, because some of
its symbols may depend on the intended application.

The symbols common to all languages of first-order predicate logic are
called logical symbols.
The symbols that are specified in order to determine a specific language are
called the signature (or vocabulary) of that language.

Definition (Signature)

A signature or vocabulary for first-order predicate logic is a pair
L =

(
{Funn

L}n∈N, {Rel
n
L}n∈N

)
of two families of computably enumerable

symbol sets, called n-ary function symbols of L and n-ary relation symbols or
predicate symbols of L.
The 0-ary function symbols are called constants of L. The 0-ary relation
symbols are called propositional relation symbols of L.

Thomas Eiter and Reinhard Pichler 19 December, 2012 10/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Logical Symbols

Definition (Logical Symbols)

The logical symbols of first-order predicate logic are:

symbol class symbols name
punctuation symbols ,) (
connectives 0-ary ⊥ falsity symbol

> truth symbol
1-ary ¬ negation symbol
2-ary ∧ conjunction symbol

∨ disjunction symbol
⇒ implication symbol

quantifiers ∀ universal quantifier
∃ existential quantifier

variables u v w x y z . . .
(possibly subscripted)

The set of variables is infinite and computably enumerable.

Thomas Eiter and Reinhard Pichler 19 December, 2012 11/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Terms and Atoms

Definition (L-term)

Let L be a signature. Terms are defined inductively:

1 Each variable x is an L-term.
2 Each constant c of L is an L-term.
3 For each n ≥ 1, if f is an n-ary function symbol of L and
t1, . . . , tn are L-terms, then f(t1, . . . , tn) is an L-term.

Definition (L-atom)

Let L be a signature.
For n ∈ N, if p is an n-ary relation symbol of L and t1, . . . , tn are L-terms, then
p(t1, . . . , tn) is an L-atom or atomic L-formula.
For n = 0, the atom may be written p() or p and is called a propositional
L-atom.

Thomas Eiter and Reinhard Pichler 19 December, 2012 12/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Terms and Atoms

Definition (L-term)

Let L be a signature. Terms are defined inductively:

1 Each variable x is an L-term.
2 Each constant c of L is an L-term.
3 For each n ≥ 1, if f is an n-ary function symbol of L and
t1, . . . , tn are L-terms, then f(t1, . . . , tn) is an L-term.

Definition (L-atom)

Let L be a signature.
For n ∈ N, if p is an n-ary relation symbol of L and t1, . . . , tn are L-terms, then
p(t1, . . . , tn) is an L-atom or atomic L-formula.
For n = 0, the atom may be written p() or p and is called a propositional
L-atom.

Thomas Eiter and Reinhard Pichler 19 December, 2012 12/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Formulas

Definition (L-formula)

Let L be a signature. Formulas are defined inductively:

1 Each L-atom is an L-formula. (atoms)
2 ⊥ and > are L-formulas. (0-ary connectives)
3 If ϕ is an L-formula, then
¬ϕ is an L-formula. (1-ary connectives)

4 If ϕ and ψ are L-formulas, then (ϕ ∧ ψ) and
(ϕ ∨ ψ) and (ϕ⇒ ψ) are L-formulas. (2-ary connectives)

5 If x is a variable and ϕ is an L-formula, then
∀xϕ and ∃xϕ are L-formulas. (quantifiers)

Remark
In most cases the signature L is clear from context, and we simply speak of
terms, atoms, and formulas without the prefix “L-”.

Thomas Eiter and Reinhard Pichler 19 December, 2012 13/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Formulas

Definition (L-formula)

Let L be a signature. Formulas are defined inductively:

1 Each L-atom is an L-formula. (atoms)
2 ⊥ and > are L-formulas. (0-ary connectives)
3 If ϕ is an L-formula, then
¬ϕ is an L-formula. (1-ary connectives)

4 If ϕ and ψ are L-formulas, then (ϕ ∧ ψ) and
(ϕ ∨ ψ) and (ϕ⇒ ψ) are L-formulas. (2-ary connectives)

5 If x is a variable and ϕ is an L-formula, then
∀xϕ and ∃xϕ are L-formulas. (quantifiers)

Remark
In most cases the signature L is clear from context, and we simply speak of
terms, atoms, and formulas without the prefix “L-”.

Thomas Eiter and Reinhard Pichler 19 December, 2012 13/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Notational Conventions

Symbols
In particular, if no signature is specified, one usually assumes the conventions:

p, q, r, . . . are relation symbols with appropriate arities.
f, g, h, . . . are function symbols with appropriate arities 6= 0.
a, b, c, . . . are constants, i.e., function symbols with arity 0.

Use of Parentheses
Unique Parsing of Terms and Formulas. Since formulas constructed with a
binary connective are enclosed by parentheses, any term or formula has an
unambiguous syntactical structure.
Precendence of Operators. For the sake of readability this strict syntax
definition can be relaxed by the convention that ∧ takes precedence over ∨ and
both of them take precedence over ⇒.
Example. q(a) ∨ q(b) ∧ r(b)⇒ p(a, f(a, b)) is a shorthand for the fully
parenthesised form ((q(a) ∨ (q(b) ∧ r(b)))⇒ p(a, f(a, b))).

Thomas Eiter and Reinhard Pichler 19 December, 2012 14/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Notational Conventions

Symbols
In particular, if no signature is specified, one usually assumes the conventions:

p, q, r, . . . are relation symbols with appropriate arities.
f, g, h, . . . are function symbols with appropriate arities 6= 0.
a, b, c, . . . are constants, i.e., function symbols with arity 0.

Use of Parentheses
Unique Parsing of Terms and Formulas. Since formulas constructed with a
binary connective are enclosed by parentheses, any term or formula has an
unambiguous syntactical structure.
Precendence of Operators. For the sake of readability this strict syntax
definition can be relaxed by the convention that ∧ takes precedence over ∨ and
both of them take precedence over ⇒.
Example. q(a) ∨ q(b) ∧ r(b)⇒ p(a, f(a, b)) is a shorthand for the fully
parenthesised form ((q(a) ∨ (q(b) ∧ r(b)))⇒ p(a, f(a, b))).

Thomas Eiter and Reinhard Pichler 19 December, 2012 14/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Variables in Formulas

Example (Bound/free variable)

Let ϕ be
(
∀x[∃xp(x) ∧ q(x)]⇒ [r(x) ∨ ∀xs(x)]

)
. The x in p(x) is bound in ϕ

by ∃x. The x in q(x) is bound in ϕ by the first ∀x. The x in r(x) is free in ϕ.
The x in s(x) is bound in ϕ by the last ∀x.
Let ϕ′ be ∀x

(
[∃xp(x) ∧ q(x)]⇒ [r(x) ∨ ∀xs(x)]

)
. Here both the x in q(x) and

the x in r(x) are bound in ϕ′ by the first ∀x.

Definition (Rectified formula)

A formula ϕ is rectified, if for each occurrence Qx of a quantifier for a
variable x, there is neither any free occurrence of x in ϕ nor any other
occurrence of a quantifier for the same variable x.

Remark
Any formula can be rectified by consistently renaming its quantified variables.
E.g., the above ϕ can be rectified to (∀u[∃vp(v) ∧ q(u)]⇒ [r(x) ∨ ∀ws(w)]).

Thomas Eiter and Reinhard Pichler 19 December, 2012 15/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Variables in Formulas

Example (Bound/free variable)

Let ϕ be
(
∀x[∃xp(x) ∧ q(x)]⇒ [r(x) ∨ ∀xs(x)]

)
. The x in p(x) is bound in ϕ

by ∃x. The x in q(x) is bound in ϕ by the first ∀x. The x in r(x) is free in ϕ.
The x in s(x) is bound in ϕ by the last ∀x.
Let ϕ′ be ∀x

(
[∃xp(x) ∧ q(x)]⇒ [r(x) ∨ ∀xs(x)]

)
. Here both the x in q(x) and

the x in r(x) are bound in ϕ′ by the first ∀x.

Definition (Rectified formula)

A formula ϕ is rectified, if for each occurrence Qx of a quantifier for a
variable x, there is neither any free occurrence of x in ϕ nor any other
occurrence of a quantifier for the same variable x.

Remark
Any formula can be rectified by consistently renaming its quantified variables.
E.g., the above ϕ can be rectified to (∀u[∃vp(v) ∧ q(u)]⇒ [r(x) ∨ ∀ws(w)]).

Thomas Eiter and Reinhard Pichler 19 December, 2012 15/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Variables in Formulas

Example (Bound/free variable)

Let ϕ be
(
∀x[∃xp(x) ∧ q(x)]⇒ [r(x) ∨ ∀xs(x)]

)
. The x in p(x) is bound in ϕ

by ∃x. The x in q(x) is bound in ϕ by the first ∀x. The x in r(x) is free in ϕ.
The x in s(x) is bound in ϕ by the last ∀x.
Let ϕ′ be ∀x

(
[∃xp(x) ∧ q(x)]⇒ [r(x) ∨ ∀xs(x)]

)
. Here both the x in q(x) and

the x in r(x) are bound in ϕ′ by the first ∀x.

Definition (Rectified formula)

A formula ϕ is rectified, if for each occurrence Qx of a quantifier for a
variable x, there is neither any free occurrence of x in ϕ nor any other
occurrence of a quantifier for the same variable x.

Remark
Any formula can be rectified by consistently renaming its quantified variables.
E.g., the above ϕ can be rectified to (∀u[∃vp(v) ∧ q(u)]⇒ [r(x) ∨ ∀ws(w)]).

Thomas Eiter and Reinhard Pichler 19 December, 2012 15/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Ground and Propositional Case

Definition (Ground term or formula, closed formula)

A ground term is a term containing no variable.
A ground formula is a formula containing no variable.
A closed formula or sentence is a formula containing no free variable.

Definition (Propositional formula)

A propositional formula is a formula containing no quantifier and no relation
symbol of arity > 0.

Ground vs. Propositional
Obviously, each propositional formula is ground. Conversely, every ground
formula can be regarded as propositional in a broader sense:
Let L be an arbitrary signature and let L′ be a new signature defining each
ground L-atom as a 0-ary relation “symbol” of L′. Then each ground L-formula
can be considered as a propositional L′-formula.

Thomas Eiter and Reinhard Pichler 19 December, 2012 16/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Ground and Propositional Case

Definition (Ground term or formula, closed formula)

A ground term is a term containing no variable.
A ground formula is a formula containing no variable.
A closed formula or sentence is a formula containing no free variable.

Definition (Propositional formula)

A propositional formula is a formula containing no quantifier and no relation
symbol of arity > 0.

Ground vs. Propositional
Obviously, each propositional formula is ground. Conversely, every ground
formula can be regarded as propositional in a broader sense:
Let L be an arbitrary signature and let L′ be a new signature defining each
ground L-atom as a 0-ary relation “symbol” of L′. Then each ground L-formula
can be considered as a propositional L′-formula.

Thomas Eiter and Reinhard Pichler 19 December, 2012 16/45

Foundations of DKS 2. Predicate Logic 2.2 Syntax of FOL

Ground and Propositional Case

Definition (Ground term or formula, closed formula)

A ground term is a term containing no variable.
A ground formula is a formula containing no variable.
A closed formula or sentence is a formula containing no free variable.

Definition (Propositional formula)

A propositional formula is a formula containing no quantifier and no relation
symbol of arity > 0.

Ground vs. Propositional
Obviously, each propositional formula is ground. Conversely, every ground
formula can be regarded as propositional in a broader sense:
Let L be an arbitrary signature and let L′ be a new signature defining each
ground L-atom as a 0-ary relation “symbol” of L′. Then each ground L-formula
can be considered as a propositional L′-formula.

Thomas Eiter and Reinhard Pichler 19 December, 2012 16/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Outline

1. General Information

2. Predicate Logic
2.1 Query Languages and Logic
2.2 Syntax of First-Order Predicate Logic
2.3 Semantics of First-Order Predicate Logic
2.4 Equality
2.5 Undecidability
2.6 Model Cardinalities

Thomas Eiter and Reinhard Pichler 19 December, 2012 17/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Semantics of First-Order Predicate Logic

Classical Tarski Model Theory

Goal: attributation of meaning to terms and formulas
Principle of a Tarski-style semantics: The interpretation of a compound
term and the truth value of a compound formula are defined recursively
over the structure of the term or formula.
Advantage of this approach: recursive definition makes things simple;
well-defined, finite, and restricted computation scope.
Disadvantage of this approach: allowing for any kind of sets for interpreting
terms makes it apparently incomputable.

Thomas Eiter and Reinhard Pichler 19 December, 2012 18/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Semantics of First-Order Predicate Logic

Definition (Variable assignment)

Let D be a nonempty set. A variable assignment in D is a function V mapping
each variable to an element of D. We denote the image of x under V by xV .

Definition (L-Interpretation)
Let L be a signature. An L-interpretation is a triple I = (D, I, V) where

D is a nonempty set called the domain or universe (of discourse) of I.
Notation: dom(I) := D.
I is a function defined on the symbols of L mapping

• each n-ary function symbol f to an n-ary function fI : Dn → D.
For n = 0 this means fI ∈ D.

• each n-ary relation symbol p to an n-ary relation pI ⊆ Dn.
For n = 0 this means either pI = ∅ or pI = {()}.

Notation: fI := f I and pI := pI .
V is a variable assignment in D. Notation: xI := xV .

Thomas Eiter and Reinhard Pichler 19 December, 2012 19/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Semantics of First-Order Predicate Logic

Definition (Variable assignment)

Let D be a nonempty set. A variable assignment in D is a function V mapping
each variable to an element of D. We denote the image of x under V by xV .

Definition (L-Interpretation)
Let L be a signature. An L-interpretation is a triple I = (D, I, V) where

D is a nonempty set called the domain or universe (of discourse) of I.
Notation: dom(I) := D.
I is a function defined on the symbols of L mapping

• each n-ary function symbol f to an n-ary function fI : Dn → D.
For n = 0 this means fI ∈ D.

• each n-ary relation symbol p to an n-ary relation pI ⊆ Dn.
For n = 0 this means either pI = ∅ or pI = {()}.

Notation: fI := f I and pI := pI .
V is a variable assignment in D. Notation: xI := xV .

Thomas Eiter and Reinhard Pichler 19 December, 2012 19/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Value of Terms

Definition
The value of a term t in an interpretation I, denoted tI , is an element of
dom(I) and inductively defined:

1 If t is a variable or a constant, then tI is defined as above.
2 If t is a compound term f(t1, . . . , tn), then tI is defined as fI(tI1 , . . . , t

I
n)

Notation
Let V be a variable assignment in D, x ∈ V , and d ∈ D. Then V [x 7→d] is the
variable assignment which, for every variable z, is defined as follows:

zV [x 7→d] =

{
d if z = x
zV if z 6= x

Let I = (D, I, V) be an interpretation. Then I[x 7→d] := (D, I, V [x 7→d]).

Thomas Eiter and Reinhard Pichler 19 December, 2012 20/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Value of Terms

Definition
The value of a term t in an interpretation I, denoted tI , is an element of
dom(I) and inductively defined:

1 If t is a variable or a constant, then tI is defined as above.
2 If t is a compound term f(t1, . . . , tn), then tI is defined as fI(tI1 , . . . , t

I
n)

Notation
Let V be a variable assignment in D, x ∈ V , and d ∈ D. Then V [x 7→d] is the
variable assignment which, for every variable z, is defined as follows:

zV [x 7→d] =

{
d if z = x
zV if z 6= x

Let I = (D, I, V) be an interpretation. Then I[x 7→d] := (D, I, V [x 7→d]).

Thomas Eiter and Reinhard Pichler 19 December, 2012 20/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Value of Formulas

Definition (Tarski, model relationship)

Let I be an interpretation and ϕ a formula. The relationship I |= ϕ, pronounced
“I is a model of ϕ” or “I satisfies ϕ” or “ϕ is true in I”, and its negation
I 6|= ϕ, pronounced “I falsifies ϕ” or “ϕ is false in I”, are defined inductively:

I |= p(t1, . . . , tn) iff (tI1 , . . . , t
I
n) ∈ pI (n-ary p, n ≥ 1)

I |= p iff () ∈ pI (0-ary p)
I 6|= ⊥
I |= >
I |= ¬ψ iff I 6|= ψ
I |= (ψ1 ∧ ψ2) iff I |= ψ1 and I |= ψ2

I |= (ψ1 ∨ ψ2) iff I |= ψ1 or I |= ψ2

I |= (ψ1 ⇒ ψ2) iff I 6|= ψ1 or I |= ψ2

I |= ∀x ψ iff I[x 7→d] |= ψ for each d ∈ D
I |= ∃x ψ iff I[x 7→d] |= ψ for at least one d ∈ D

For a set S of formulas, I |= S iff I |= ϕ for each ϕ ∈ S.

Thomas Eiter and Reinhard Pichler 19 December, 2012 21/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Example

Signature:
function symbols: 0-ary a, b 1-ary f
relation symbols: 1-ary p, q 2-ary r

Formula:
ϕ = q(a) ∧ r(a, b) ∧ ¬r(f(a), b) ∧ ∀x

(
p(x)⇒ r(x, f(x))

)
Interpretation I:

dom(I) =

{
•N|| ,
•N|| ,
•u↑cb , •u↑cb

}
aI =

•N|| bI =
•u↑cb fI =

{
•N|| 7→
•N|| ,
•N|| 7→ •u↑cb ,

•u↑cb 7→ •N|| , •u↑cb 7→
•u↑cb
}

pI =

{
•N|| ,
•u↑cb
}

qI =

{
•N|| ,
•N||
}

rI =

{(
•N|| ,
•N||), (•N|| , •u↑cb), (•N|| , •u↑cb), (•u↑cb , •N||), (•u↑cb , •u↑cb)}

Model relationship:
We can check that I |= ϕ holds.

Thomas Eiter and Reinhard Pichler 19 December, 2012 22/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Example

Signature:
function symbols: 0-ary a, b 1-ary f
relation symbols: 1-ary p, q 2-ary r

Formula:
ϕ = q(a) ∧ r(a, b) ∧ ¬r(f(a), b) ∧ ∀x

(
p(x)⇒ r(x, f(x))

)

Interpretation I:

dom(I) =

{
•N|| ,
•N|| ,
•u↑cb , •u↑cb

}
aI =

•N|| bI =
•u↑cb fI =

{
•N|| 7→
•N|| ,
•N|| 7→ •u↑cb ,

•u↑cb 7→ •N|| , •u↑cb 7→
•u↑cb
}

pI =

{
•N|| ,
•u↑cb
}

qI =

{
•N|| ,
•N||
}

rI =

{(
•N|| ,
•N||), (•N|| , •u↑cb), (•N|| , •u↑cb), (•u↑cb , •N||), (•u↑cb , •u↑cb)}

Model relationship:
We can check that I |= ϕ holds.

Thomas Eiter and Reinhard Pichler 19 December, 2012 22/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Example

Signature:
function symbols: 0-ary a, b 1-ary f
relation symbols: 1-ary p, q 2-ary r

Formula:
ϕ = q(a) ∧ r(a, b) ∧ ¬r(f(a), b) ∧ ∀x

(
p(x)⇒ r(x, f(x))

)
Interpretation I:

dom(I) =

{
•N|| ,
•N|| ,
•u↑cb , •u↑cb

}
aI =

•N|| bI =
•u↑cb fI =

{
•N|| 7→
•N|| ,
•N|| 7→ •u↑cb ,

•u↑cb 7→ •N|| , •u↑cb 7→
•u↑cb
}

pI =

{
•N|| ,
•u↑cb
}

qI =

{
•N|| ,
•N||
}

rI =

{(
•N|| ,
•N||), (•N|| , •u↑cb), (•N|| , •u↑cb), (•u↑cb , •N||), (•u↑cb , •u↑cb)}

Model relationship:
We can check that I |= ϕ holds.

Thomas Eiter and Reinhard Pichler 19 December, 2012 22/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Example

Signature:
function symbols: 0-ary a, b 1-ary f
relation symbols: 1-ary p, q 2-ary r

Formula:
ϕ = q(a) ∧ r(a, b) ∧ ¬r(f(a), b) ∧ ∀x

(
p(x)⇒ r(x, f(x))

)
Interpretation I:

dom(I) =

{
•N|| ,
•N|| ,
•u↑cb , •u↑cb

}
aI =

•N|| bI =
•u↑cb fI =

{
•N|| 7→
•N|| ,
•N|| 7→ •u↑cb ,

•u↑cb 7→ •N|| , •u↑cb 7→
•u↑cb
}

pI =

{
•N|| ,
•u↑cb
}

qI =

{
•N|| ,
•N||
}

rI =

{(
•N|| ,
•N||), (•N|| , •u↑cb), (•N|| , •u↑cb), (•u↑cb , •N||), (•u↑cb , •u↑cb)}

Model relationship:
We can check that I |= ϕ holds.

Thomas Eiter and Reinhard Pichler 19 December, 2012 22/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Semantic Properties, Entailment, Logical Equivalence

Semantic Properties. A formula is
valid iff it is satisfied in each interpretation p ∨ ¬p

satisfiable iff it is satisfied in at least one interpretation p

falsifiable iff it is falsified in at least one interpretation p

unsatisfiable iff it is falsified in each interpretation p ∧ ¬p

Entailment, Logical Equivalence. For formulas ϕ and ψ
ϕ |= ψ iff for each interpretation I:

if I |= ϕ then I |= ψ (p ∧ q) |= (p ∨ q)
ϕ |=| ψ iff ϕ |= ψ and ψ |= ϕ (p ∧ q) |=| (q ∧ p)

Inter-translatability: Being able to determine one of validity, unsatisfiability, or
entailment, is sufficient to determine all of them:
ϕ is valid iff ¬ϕ is unsatisfiable iff > |= ϕ.
ϕ is unsatisfiable iff ¬ϕ is valid iff ϕ |= ⊥.
ϕ |= ψ iff (ϕ⇒ ψ) is valid iff (ϕ ∧ ¬ψ) is unsatisfiable.

Thomas Eiter and Reinhard Pichler 19 December, 2012 23/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Semantic Properties, Entailment, Logical Equivalence

Semantic Properties. A formula is
valid iff it is satisfied in each interpretation p ∨ ¬p

satisfiable iff it is satisfied in at least one interpretation p

falsifiable iff it is falsified in at least one interpretation p

unsatisfiable iff it is falsified in each interpretation p ∧ ¬p

Entailment, Logical Equivalence. For formulas ϕ and ψ
ϕ |= ψ iff for each interpretation I:

if I |= ϕ then I |= ψ (p ∧ q) |= (p ∨ q)
ϕ |=| ψ iff ϕ |= ψ and ψ |= ϕ (p ∧ q) |=| (q ∧ p)

Inter-translatability: Being able to determine one of validity, unsatisfiability, or
entailment, is sufficient to determine all of them:
ϕ is valid iff ¬ϕ is unsatisfiable iff > |= ϕ.
ϕ is unsatisfiable iff ¬ϕ is valid iff ϕ |= ⊥.
ϕ |= ψ iff (ϕ⇒ ψ) is valid iff (ϕ ∧ ¬ψ) is unsatisfiable.

Thomas Eiter and Reinhard Pichler 19 December, 2012 23/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Semantic Properties, Entailment, Logical Equivalence

Semantic Properties. A formula is
valid iff it is satisfied in each interpretation p ∨ ¬p

satisfiable iff it is satisfied in at least one interpretation p

falsifiable iff it is falsified in at least one interpretation p

unsatisfiable iff it is falsified in each interpretation p ∧ ¬p

Entailment, Logical Equivalence. For formulas ϕ and ψ
ϕ |= ψ iff for each interpretation I:

if I |= ϕ then I |= ψ (p ∧ q) |= (p ∨ q)
ϕ |=| ψ iff ϕ |= ψ and ψ |= ϕ (p ∧ q) |=| (q ∧ p)

Inter-translatability: Being able to determine one of validity, unsatisfiability, or
entailment, is sufficient to determine all of them:
ϕ is valid iff ¬ϕ is unsatisfiable iff > |= ϕ.
ϕ is unsatisfiable iff ¬ϕ is valid iff ϕ |= ⊥.
ϕ |= ψ iff (ϕ⇒ ψ) is valid iff (ϕ ∧ ¬ψ) is unsatisfiable.

Thomas Eiter and Reinhard Pichler 19 December, 2012 23/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Calculi, Proof Systems

Motivation

Entailment ϕ |= ψ formalises the concept of logical consequence.
A major concern in logic is the development of calculi, also called proof
systems, which formalise the notion of deductive inference.

Definition (Calculus)

A calculus defines derivation rules, with which formulas can be derived
from formulas by purely syntactic operations.
The derivability relationship ϕ ` ψ for a calculus holds iff there is a finite
sequence of applications of derivation rules of the calculus, which applied
to ϕ result in ψ.
Ideally, derivability should mirror entailment: a calculus is called
sound iff whenever ϕ ` ψ then ϕ |= ψ and
complete iff whenever ϕ |= ψ then ϕ ` ψ.

Thomas Eiter and Reinhard Pichler 19 December, 2012 24/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Calculi, Proof Systems

Motivation

Entailment ϕ |= ψ formalises the concept of logical consequence.
A major concern in logic is the development of calculi, also called proof
systems, which formalise the notion of deductive inference.

Definition (Calculus)

A calculus defines derivation rules, with which formulas can be derived
from formulas by purely syntactic operations.
The derivability relationship ϕ ` ψ for a calculus holds iff there is a finite
sequence of applications of derivation rules of the calculus, which applied
to ϕ result in ψ.
Ideally, derivability should mirror entailment: a calculus is called
sound iff whenever ϕ ` ψ then ϕ |= ψ and
complete iff whenever ϕ |= ψ then ϕ ` ψ.

Thomas Eiter and Reinhard Pichler 19 December, 2012 24/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Important Results about Tarski Model Theory

Theorem (Gödel, completeness theorem)

There exist calculi for first-order predicate logic such that S ` ϕ iff S |= ϕ for
any set S of closed formulas and any closed formula ϕ.

Theorem (Church-Turing, undecidability theorem)

For signatures with a non-propositional relation symbol and a relation or
function symbol of arity ≥ 2, satisfiability is undecidable.

Theorem (Gödel-Malcev, finiteness or compactness theorem)

Let S be an infinite set of closed formulas. If every finite subset of S is
satisfiable, then S is satisfiable.

Remark. Proofs to be provided in part two of this lecture.

Thomas Eiter and Reinhard Pichler 19 December, 2012 25/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Important Results about Tarski Model Theory

Theorem (Gödel, completeness theorem)

There exist calculi for first-order predicate logic such that S ` ϕ iff S |= ϕ for
any set S of closed formulas and any closed formula ϕ.

Theorem (Church-Turing, undecidability theorem)

For signatures with a non-propositional relation symbol and a relation or
function symbol of arity ≥ 2, satisfiability is undecidable.

Theorem (Gödel-Malcev, finiteness or compactness theorem)

Let S be an infinite set of closed formulas. If every finite subset of S is
satisfiable, then S is satisfiable.

Remark. Proofs to be provided in part two of this lecture.

Thomas Eiter and Reinhard Pichler 19 December, 2012 25/45

Foundations of DKS 2. Predicate Logic 2.3 Semantics of FOL

Important Results about Tarski Model Theory

Theorem (Gödel, completeness theorem)

There exist calculi for first-order predicate logic such that S ` ϕ iff S |= ϕ for
any set S of closed formulas and any closed formula ϕ.

Theorem (Church-Turing, undecidability theorem)

For signatures with a non-propositional relation symbol and a relation or
function symbol of arity ≥ 2, satisfiability is undecidable.

Theorem (Gödel-Malcev, finiteness or compactness theorem)

Let S be an infinite set of closed formulas. If every finite subset of S is
satisfiable, then S is satisfiable.

Remark. Proofs to be provided in part two of this lecture.

Thomas Eiter and Reinhard Pichler 19 December, 2012 25/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Outline

1. General Information

2. Predicate Logic
2.1 Query Languages and Logic
2.2 Syntax of First-Order Predicate Logic
2.3 Semantics of First-Order Predicate Logic
2.4 Equality
2.5 Undecidability
2.6 Model Cardinalities

Thomas Eiter and Reinhard Pichler 19 December, 2012 26/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Equality

Motivation

In many applications, we want to express equality: For this purpose, let the
signature L contain a special 2-ary relation symbol =̇ for equality.
The relation symbol =̇ shall indeed be interpreted as equality: we consider
normal interpretations (and thus treat equality as a built-in predicate).
Alternatively, we can add equality axioms to the formula: this is fine for
many purposes; but it does not exclude non-normal models!

Definition (Normal interpretation)

An interpretation I is normal, iff it interprets the relation symbol =̇ with the
equality relation on its domain, i.e., =̇I is the relation {(d, d) | d ∈ dom(I)}.
For formulas or sets of formulas ϕ and ψ, we write:
I |== ϕ iff I is normal and I |= ϕ.
ϕ |== ψ iff for each normal interpretation I: if I |== ϕ then I |== ψ.

Thomas Eiter and Reinhard Pichler 19 December, 2012 27/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Equality

Motivation

In many applications, we want to express equality: For this purpose, let the
signature L contain a special 2-ary relation symbol =̇ for equality.
The relation symbol =̇ shall indeed be interpreted as equality: we consider
normal interpretations (and thus treat equality as a built-in predicate).
Alternatively, we can add equality axioms to the formula: this is fine for
many purposes; but it does not exclude non-normal models!

Definition (Normal interpretation)

An interpretation I is normal, iff it interprets the relation symbol =̇ with the
equality relation on its domain, i.e., =̇I is the relation {(d, d) | d ∈ dom(I)}.
For formulas or sets of formulas ϕ and ψ, we write:
I |== ϕ iff I is normal and I |= ϕ.
ϕ |== ψ iff for each normal interpretation I: if I |== ϕ then I |== ψ.

Thomas Eiter and Reinhard Pichler 19 December, 2012 27/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Equality Axioms

Definition (Equality axioms)

Given a signature L with 2-ary relation symbol =̇, the set EQL of equality
axioms for L consists of the formulas:

∀x x=̇x (reflexivity of =̇)
∀x∀y(x=̇y ⇒ y=̇x) (symmetry of =̇)
∀x∀y∀z((x=̇y ∧ y=̇z)⇒ x=̇z) (transitivity of =̇)
for each n-ary function symbol f , n > 0 (substitution axiom for f)
∀x1 . . . xn∀x′1 . . . x′n((x1=̇x′1 ∧ . . . ∧ xn=̇x′n)⇒
f(x1, . . . , xn)=̇f(x′1, . . . , x

′
n))

for each n-ary relation symbol p, n > 0 (substitution axiom for p)
∀x1 . . . xn∀x′1 . . . x′n((x1=̇x′1 ∧ . . . ∧ xn=̇x′n ∧ p(x1, . . . , xn))⇒
p(x′1, . . . , x

′
n))

Thomas Eiter and Reinhard Pichler 19 December, 2012 28/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Theorem (Equality axioms)

For each interpretation I, if I is normal then I |= EQL.
For each interpretation I with I |= EQL there is a normal
interpretation I= such that for each formula ϕ: I |= ϕ iff I= |== ϕ.
For each set S of formulas and formula ϕ: EQL ∪ S |= ϕ iff S |== ϕ.

Corollary (Finiteness or compactness theorem with equality)

Let S be an infinite set of closed formulas with equality. If every finite subset
of S has a normal model, then S has a normal model.

Proof (sketch)

Consider the infinite set S ∪ EQL and an arbitrary finite subset S′ ∪ E′ of
S ∪ EQL with S′ ⊆ S and E′ ⊆ EQL.
(1) By assumption, S′ has a normal model I. By the theorem, we conclude that
I is a model of S′ ∪ EQL and hence of S′ ∪ E′. Hence, S′ ∪ E′ is satisfiable.
(2) Thus, by compactness, S ∪EQL has a model I ′. Therefore, by the theorem,
there exists a normal interpretation I ′= with I ′= |== S.

Thomas Eiter and Reinhard Pichler 19 December, 2012 29/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Theorem (Equality axioms)

For each interpretation I, if I is normal then I |= EQL.
For each interpretation I with I |= EQL there is a normal
interpretation I= such that for each formula ϕ: I |= ϕ iff I= |== ϕ.
For each set S of formulas and formula ϕ: EQL ∪ S |= ϕ iff S |== ϕ.

Corollary (Finiteness or compactness theorem with equality)

Let S be an infinite set of closed formulas with equality. If every finite subset
of S has a normal model, then S has a normal model.

Proof (sketch)

Consider the infinite set S ∪ EQL and an arbitrary finite subset S′ ∪ E′ of
S ∪ EQL with S′ ⊆ S and E′ ⊆ EQL.
(1) By assumption, S′ has a normal model I. By the theorem, we conclude that
I is a model of S′ ∪ EQL and hence of S′ ∪ E′. Hence, S′ ∪ E′ is satisfiable.
(2) Thus, by compactness, S ∪EQL has a model I ′. Therefore, by the theorem,
there exists a normal interpretation I ′= with I ′= |== S.

Thomas Eiter and Reinhard Pichler 19 December, 2012 29/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Theorem (Equality axioms)

For each interpretation I, if I is normal then I |= EQL.
For each interpretation I with I |= EQL there is a normal
interpretation I= such that for each formula ϕ: I |= ϕ iff I= |== ϕ.
For each set S of formulas and formula ϕ: EQL ∪ S |= ϕ iff S |== ϕ.

Corollary (Finiteness or compactness theorem with equality)

Let S be an infinite set of closed formulas with equality. If every finite subset
of S has a normal model, then S has a normal model.

Proof (sketch)

Consider the infinite set S ∪ EQL and an arbitrary finite subset S′ ∪ E′ of
S ∪ EQL with S′ ⊆ S and E′ ⊆ EQL.
(1) By assumption, S′ has a normal model I. By the theorem, we conclude that
I is a model of S′ ∪ EQL and hence of S′ ∪ E′. Hence, S′ ∪ E′ is satisfiable.
(2) Thus, by compactness, S ∪EQL has a model I ′. Therefore, by the theorem,
there exists a normal interpretation I ′= with I ′= |== S.

Thomas Eiter and Reinhard Pichler 19 December, 2012 29/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Model Extension Theorem and Non-Normal Models

Theorem (Model extension theorem)

For each interpretation I and each set D′ ⊇ dom(I) there is an
interpretation I ′ with dom(I ′) = D′ such that for each formula ϕ:
I |= ϕ iff I ′ |= ϕ.

Proof (sketch)

Fix an arbitrary element d ∈ dom(I). The idea is to let all “new” elements
behave exactly like d. For this purpose, we define an auxiliary function π
mapping each “new” element to d and each “old” element to itself:
π : D′ → dom(I), π(d′) := d if d′ /∈ dom(I), π(d′) := d′ if d′ ∈ dom(I).
Then we define fI

′
: D′ n → D′, fI

′
(d1, . . . , dn) := fI(π(d1), . . . , π(dn))

and pI
′ ⊆ D′ n, pI

′
:= { (d1, . . . , dn) ∈ D′ n | (π(d1), . . . , π(dn)) ∈ pI } for

all signature symbols and arities.

Thomas Eiter and Reinhard Pichler 19 December, 2012 30/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Model Extension Theorem and Non-Normal Models

Theorem (Model extension theorem)

For each interpretation I and each set D′ ⊇ dom(I) there is an
interpretation I ′ with dom(I ′) = D′ such that for each formula ϕ:
I |= ϕ iff I ′ |= ϕ.

Proof (sketch)

Fix an arbitrary element d ∈ dom(I). The idea is to let all “new” elements
behave exactly like d. For this purpose, we define an auxiliary function π
mapping each “new” element to d and each “old” element to itself:
π : D′ → dom(I), π(d′) := d if d′ /∈ dom(I), π(d′) := d′ if d′ ∈ dom(I).
Then we define fI

′
: D′ n → D′, fI

′
(d1, . . . , dn) := fI(π(d1), . . . , π(dn))

and pI
′ ⊆ D′ n, pI

′
:= { (d1, . . . , dn) ∈ D′ n | (π(d1), . . . , π(dn)) ∈ pI } for

all signature symbols and arities.

Thomas Eiter and Reinhard Pichler 19 December, 2012 30/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Model Extension Theorem and Non-Normal Models

Corollary (Existence of non-normal models)

Every satisfiable set of formulas has non-normal models.

Proof (sketch)

By the construction in the above proof, if (d, d) ∈ =̇I then (d, d′) ∈ =̇I
′
for

each d′ ∈ D′ and the fixed element d ∈ dom(I). Hence, if I ′ is any proper
extension of a normal interpretation I, then I ′ is not normal.

Remarks

Every model of EQL interprets =̇ by a congruence relation on the domain.
The equality relation is the special case with singleton congruence classes.
Because of the model extension theorem, there is no way to prevent models
with larger congruence classes, unless equality is treated as built-in by
making interpretations normal by definition.

Thomas Eiter and Reinhard Pichler 19 December, 2012 31/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Model Extension Theorem and Non-Normal Models

Corollary (Existence of non-normal models)

Every satisfiable set of formulas has non-normal models.

Proof (sketch)

By the construction in the above proof, if (d, d) ∈ =̇I then (d, d′) ∈ =̇I
′
for

each d′ ∈ D′ and the fixed element d ∈ dom(I). Hence, if I ′ is any proper
extension of a normal interpretation I, then I ′ is not normal.

Remarks

Every model of EQL interprets =̇ by a congruence relation on the domain.
The equality relation is the special case with singleton congruence classes.
Because of the model extension theorem, there is no way to prevent models
with larger congruence classes, unless equality is treated as built-in by
making interpretations normal by definition.

Thomas Eiter and Reinhard Pichler 19 December, 2012 31/45

Foundations of DKS 2. Predicate Logic 2.4 Equality

Model Extension Theorem and Non-Normal Models

Corollary (Existence of non-normal models)

Every satisfiable set of formulas has non-normal models.

Proof (sketch)

By the construction in the above proof, if (d, d) ∈ =̇I then (d, d′) ∈ =̇I
′
for

each d′ ∈ D′ and the fixed element d ∈ dom(I). Hence, if I ′ is any proper
extension of a normal interpretation I, then I ′ is not normal.

Remarks

Every model of EQL interprets =̇ by a congruence relation on the domain.
The equality relation is the special case with singleton congruence classes.
Because of the model extension theorem, there is no way to prevent models
with larger congruence classes, unless equality is treated as built-in by
making interpretations normal by definition.

Thomas Eiter and Reinhard Pichler 19 December, 2012 31/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Outline

1. General Information

2. Predicate Logic
2.1 Query Languages and Logic
2.2 Syntax of First-Order Predicate Logic
2.3 Semantics of First-Order Predicate Logic
2.4 Equality
2.5 Undecidability
2.6 Model Cardinalities

Thomas Eiter and Reinhard Pichler 19 December, 2012 32/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Undecidability of First-Order Predicate Logic

Motivation

We inspect a proof of the undecidability of (the satisfiability or validity of)
first-order predicate logic.
The proof is folklore

• It does not make use of equality at all.
• The first-order formula is a conjunction of Horn clauses.

Proof idea
We reduce (a variant of) the Halting Problem to the unsatisfiability problem:
Given a deterministic Turing machine T with halting state h, it is undecidable if
T when starting with the empty tape eventually reaches the halting state h.

Thomas Eiter and Reinhard Pichler 19 December, 2012 33/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Undecidability of First-Order Predicate Logic

Motivation

We inspect a proof of the undecidability of (the satisfiability or validity of)
first-order predicate logic.
The proof is folklore

• It does not make use of equality at all.
• The first-order formula is a conjunction of Horn clauses.

Proof idea
We reduce (a variant of) the Halting Problem to the unsatisfiability problem:
Given a deterministic Turing machine T with halting state h, it is undecidable if
T when starting with the empty tape eventually reaches the halting state h.

Thomas Eiter and Reinhard Pichler 19 December, 2012 33/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Turing Machines

Definition (Deterministic Turing machine)

A deterministic Turing machine (DTM) is defined as a quadruple (S,Σ, δ, q0)
with the following meaning: S is a finite set of states, Σ is a finite alphabet of
symbols, δ is a transition function, and q0 ∈ S is the initial state. The alphabet
Σ contains a special symbol t called blank. The transition function δ is a map

δ : S × Σ → (S ∪ {h})× Σ× {-1, 0, +1},

where h denotes an additional state (the halting state) not occurring in S, and
-1, 0, +1 denote motion directions.

We may assume w.l.o.g., that the machine never moves off the left end of the
tape, i.e., d 6= -1 whenever the cursor is on the leftmost cell; this can be easily
ensured by a special symbol . which marks the left end of the tape.

Thomas Eiter and Reinhard Pichler 19 December, 2012 34/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Computation of a Turing Machine

Configurations
Let T be a DTM (Σ, S, δ, q0). The tape of T is divided into cells containing
symbols of Σ. There is a cursor that may move along the tape. At every time
instant, the current configuration of T is characterized by a tuple (q, w, σ, w′),
where q denotes the state, w and w′ denote the tape contents (written as string)
to the left/right of the cursor and σ denotes the currently scanned symbol.

Initial Configuration
On input string I, the TM T is initially in configuration (q0, ε, ., I), i.e., T is in
the initial state q0, the tape contains the start symbol . followed by the input
string I, and the cursor points to the leftmost cell of the tape.

Notation
We denote a configuration (q, w, σ, w′) in the format BΣ∗SΣ∗E, with the state
symbol written in front of the currently scanned tape symbol. B and E are
symbols marking the beginning and the end of the tape contents (wσw′).

Thomas Eiter and Reinhard Pichler 19 December, 2012 35/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Computation of a Turing Machine

Configurations
Let T be a DTM (Σ, S, δ, q0). The tape of T is divided into cells containing
symbols of Σ. There is a cursor that may move along the tape. At every time
instant, the current configuration of T is characterized by a tuple (q, w, σ, w′),
where q denotes the state, w and w′ denote the tape contents (written as string)
to the left/right of the cursor and σ denotes the currently scanned symbol.

Initial Configuration
On input string I, the TM T is initially in configuration (q0, ε, ., I), i.e., T is in
the initial state q0, the tape contains the start symbol . followed by the input
string I, and the cursor points to the leftmost cell of the tape.

Notation
We denote a configuration (q, w, σ, w′) in the format BΣ∗SΣ∗E, with the state
symbol written in front of the currently scanned tape symbol. B and E are
symbols marking the beginning and the end of the tape contents (wσw′).

Thomas Eiter and Reinhard Pichler 19 December, 2012 35/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Computation of a Turing Machine

Configurations
Let T be a DTM (Σ, S, δ, q0). The tape of T is divided into cells containing
symbols of Σ. There is a cursor that may move along the tape. At every time
instant, the current configuration of T is characterized by a tuple (q, w, σ, w′),
where q denotes the state, w and w′ denote the tape contents (written as string)
to the left/right of the cursor and σ denotes the currently scanned symbol.

Initial Configuration
On input string I, the TM T is initially in configuration (q0, ε, ., I), i.e., T is in
the initial state q0, the tape contains the start symbol . followed by the input
string I, and the cursor points to the leftmost cell of the tape.

Notation
We denote a configuration (q, w, σ, w′) in the format BΣ∗SΣ∗E, with the state
symbol written in front of the currently scanned tape symbol. B and E are
symbols marking the beginning and the end of the tape contents (wσw′).

Thomas Eiter and Reinhard Pichler 19 December, 2012 35/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Computation Step
The transition relation for T , denoted by `T , is defined as follows:

1 Bwaqσw′E `T Bwq′aσ′w′E, if δ(q, σ) = (q′, σ′, -1).
2 Bwqσw′E `T Bwq′σ′w′E, if δ(q, σ) = (q′, σ′, 0).
3 Bwqσaw′E `T Bwσ′q′aw′E and BwqσE `T Bwσ′q′ t E,

if δ(q, σ) = (q′, σ′, +1).
We write ∗̀T to denote the reflexive and transitive closure of `T .

Halting
T halts when it reaches the state h, i.e., there exist values w, σ, and w′, s.t.
T reaches the configuration (h, w, σ, w′).
That is, T halts on input I if Bq0 . IE ∗̀

T Bwhσw′E for some w, σ, and w′.

Thomas Eiter and Reinhard Pichler 19 December, 2012 36/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Computation Step
The transition relation for T , denoted by `T , is defined as follows:

1 Bwaqσw′E `T Bwq′aσ′w′E, if δ(q, σ) = (q′, σ′, -1).
2 Bwqσw′E `T Bwq′σ′w′E, if δ(q, σ) = (q′, σ′, 0).
3 Bwqσaw′E `T Bwσ′q′aw′E and BwqσE `T Bwσ′q′ t E,

if δ(q, σ) = (q′, σ′, +1).
We write ∗̀T to denote the reflexive and transitive closure of `T .

Halting
T halts when it reaches the state h, i.e., there exist values w, σ, and w′, s.t.
T reaches the configuration (h, w, σ, w′).
That is, T halts on input I if Bq0 . IE ∗̀

T Bwhσw′E for some w, σ, and w′.

Thomas Eiter and Reinhard Pichler 19 December, 2012 36/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Proof of the Undecidability of First-Order Predicate Logic

Encoding of TM configurations as atoms
For every state q ∈ S, let q̂ be a constant symbol.
For every tape symbol a ∈ Σ, let â be a unary function symbol.
The constant symbols B̂ and Ê correspond to the end-of-tape markers B and E.

A configuration Bσ1 . . . σmqσm+1 . . . σnE is represented by the atom

P (σ̂m(. . . σ̂1(B̂) . . .), q̂, σ̂m+1(. . . σ̂n(Ê) . . .))

(The tape to the left of the current position is represented in reversed order.)

Thomas Eiter and Reinhard Pichler 19 December, 2012 37/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Encoding of TM computations
Given an arbitrary TM T , we define the set ΦT of formulas as the smallest set
containing the following formulas (i.e., Horn clauses):

1 If δ(q, σ) = (q′, σ′, -1) then for all a ∈ Σ,
(∀x)(∀y)P (â(x), q̂, σ̂(y))⇒ P (x, q̂′, â(σ̂′(y))) ∈ ΦT

2 If δ(q, σ) = (q′, σ′, 0) then (∀x)(∀y)P (x, q̂, σ̂(y))⇒ P (x, q̂′, σ̂′(y)) ∈ ΦT

3 If δ(q, σ) = (q′, σ′, +1) then (∀x)(∀y)P (x, q̂, σ̂(y))⇒ P (σ̂′(x), q̂′, y)) ∈ ΦT

4 (∀x)P (x, q̂, Ê)⇒ P (x, q̂, t̂(Ê)) ∈ ΦT .

Proposition
For any Turing machine T , every v, v′, w, w′ ∈ Σ∗ and q, q′ ∈ S with
v = v1, . . . , vr, v′ = v′1, . . . , v

′
r′ , w = w1, . . . , ws, and w = w′1, . . . , w

′
s′ :

BvqwE ∗̀
T Bv′q′w′E iff

ΦT |= P (v̂r(..v̂1(B̂)..), q̂, ŵ1(..ŵs(Ê)..))⇒ P (v̂′r′(..v̂
′
1(B̂)..), q̂′, ŵ′1(..ŵ′s′(Ê)..))

For any Turing machine T , ΦT ∪ {P (B̂, q̂0, .̂(Ê)), (∀x)(∀y)¬P (x, ĥ, y)} is
unsatisfiable iff T , when starting with the empty tape, eventually halts.

Thomas Eiter and Reinhard Pichler 19 December, 2012 38/45

Foundations of DKS 2. Predicate Logic 2.5 Undecidability

Encoding of TM computations
Given an arbitrary TM T , we define the set ΦT of formulas as the smallest set
containing the following formulas (i.e., Horn clauses):

1 If δ(q, σ) = (q′, σ′, -1) then for all a ∈ Σ,
(∀x)(∀y)P (â(x), q̂, σ̂(y))⇒ P (x, q̂′, â(σ̂′(y))) ∈ ΦT

2 If δ(q, σ) = (q′, σ′, 0) then (∀x)(∀y)P (x, q̂, σ̂(y))⇒ P (x, q̂′, σ̂′(y)) ∈ ΦT

3 If δ(q, σ) = (q′, σ′, +1) then (∀x)(∀y)P (x, q̂, σ̂(y))⇒ P (σ̂′(x), q̂′, y)) ∈ ΦT

4 (∀x)P (x, q̂, Ê)⇒ P (x, q̂, t̂(Ê)) ∈ ΦT .

Proposition
For any Turing machine T , every v, v′, w, w′ ∈ Σ∗ and q, q′ ∈ S with
v = v1, . . . , vr, v′ = v′1, . . . , v

′
r′ , w = w1, . . . , ws, and w = w′1, . . . , w

′
s′ :

BvqwE ∗̀
T Bv′q′w′E iff

ΦT |= P (v̂r(..v̂1(B̂)..), q̂, ŵ1(..ŵs(Ê)..))⇒ P (v̂′r′(..v̂
′
1(B̂)..), q̂′, ŵ′1(..ŵ′s′(Ê)..))

For any Turing machine T , ΦT ∪ {P (B̂, q̂0, .̂(Ê)), (∀x)(∀y)¬P (x, ĥ, y)} is
unsatisfiable iff T , when starting with the empty tape, eventually halts.

Thomas Eiter and Reinhard Pichler 19 December, 2012 38/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Outline

1. General Information

2. Predicate Logic
2.1 Query Languages and Logic
2.2 Syntax of First-Order Predicate Logic
2.3 Semantics of First-Order Predicate Logic
2.4 Equality
2.5 Undecidability
2.6 Model Cardinalities

Thomas Eiter and Reinhard Pichler 19 December, 2012 39/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Model Cardinalities

Motivation
We sometimes want to enforce that a formula only has models of a certain
cardinality, e.g.:

(only) infinite models
(only) finite models
(only) finite models with cardinality bounded by some constant
etc.

Some of these properties cannot be expressed in first-order logic (possibly not
even if we may use equality).

Thomas Eiter and Reinhard Pichler 19 December, 2012 40/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Theorem
Lower bounds of model cardinalities can be expressed in first-order predicate
logic (even without equality).

Example
All models of the following satisfiable set of formulas have domains with
cardinality ≥ 3:

{ ∃x1(p1(x1) ∧ ¬p2(x1) ∧ ¬p3(x1)),
∃x2(¬p1(x2) ∧ p2(x2) ∧ ¬p3(x2)),
∃x3(¬p1(x3) ∧ ¬p2(x3) ∧ p3(x3)) }

Example
All models of the following satisfiable set of formulas have infinite domains:

{ ∀x¬(x < x), ∀x∀y∀z(x < y ∧ y < z ⇒ x < z), ∀x∃y x < y }.

Thomas Eiter and Reinhard Pichler 19 December, 2012 41/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Theorem
Lower bounds of model cardinalities can be expressed in first-order predicate
logic (even without equality).

Example
All models of the following satisfiable set of formulas have domains with
cardinality ≥ 3:

{ ∃x1(p1(x1) ∧ ¬p2(x1) ∧ ¬p3(x1)),
∃x2(¬p1(x2) ∧ p2(x2) ∧ ¬p3(x2)),
∃x3(¬p1(x3) ∧ ¬p2(x3) ∧ p3(x3)) }

Example
All models of the following satisfiable set of formulas have infinite domains:

{ ∀x¬(x < x), ∀x∀y∀z(x < y ∧ y < z ⇒ x < z), ∀x∃y x < y }.

Thomas Eiter and Reinhard Pichler 19 December, 2012 41/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Theorem
Lower bounds of model cardinalities can be expressed in first-order predicate
logic (even without equality).

Example
All models of the following satisfiable set of formulas have domains with
cardinality ≥ 3:

{ ∃x1(p1(x1) ∧ ¬p2(x1) ∧ ¬p3(x1)),
∃x2(¬p1(x2) ∧ p2(x2) ∧ ¬p3(x2)),
∃x3(¬p1(x3) ∧ ¬p2(x3) ∧ p3(x3)) }

Example
All models of the following satisfiable set of formulas have infinite domains:

{ ∀x¬(x < x), ∀x∀y∀z(x < y ∧ y < z ⇒ x < z), ∀x∃y x < y }.

Thomas Eiter and Reinhard Pichler 19 December, 2012 41/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Inexpressibility without Equality

Theorem
Upper bounds of model cardinalities cannot be expressed in first-order predicate
logic without equality.

Theorem
Each satisfiable set of formulas without equality has models with infinite domain.

Corollary
Finiteness cannot be expressed in first-order predicate logic without equality.

Proof (sketch)

All three results immediately follow from the model extension theorem.

Thomas Eiter and Reinhard Pichler 19 December, 2012 42/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Inexpressibility without Equality

Theorem
Upper bounds of model cardinalities cannot be expressed in first-order predicate
logic without equality.

Theorem
Each satisfiable set of formulas without equality has models with infinite domain.

Corollary
Finiteness cannot be expressed in first-order predicate logic without equality.

Proof (sketch)

All three results immediately follow from the model extension theorem.

Thomas Eiter and Reinhard Pichler 19 December, 2012 42/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Expressibility and Inexpressibility with Equality

Theorem
Bounded finiteness can be expressed in first-order predicate logic with equality.
That is, for any given natural number k ≥ 1, the upper bound k of model
cardinalities can be expressed.

Example
All normal models of the following satisfiable formula have domains with
cardinality ≤ 3: ∃x1∃x2∃x3∀y(y=̇x1 ∨ y=̇x2 ∨ y=̇x3).

Thomas Eiter and Reinhard Pichler 19 December, 2012 43/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Expressibility and Inexpressibility with Equality

Theorem
Bounded finiteness can be expressed in first-order predicate logic with equality.
That is, for any given natural number k ≥ 1, the upper bound k of model
cardinalities can be expressed.

Example
All normal models of the following satisfiable formula have domains with
cardinality ≤ 3: ∃x1∃x2∃x3∀y(y=̇x1 ∨ y=̇x2 ∨ y=̇x3).

Thomas Eiter and Reinhard Pichler 19 December, 2012 43/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Theorem
If a set of formulas with equality has arbitrarily large finite normal models, then
it has an infinite normal model.

Proof
Let S be such that for each k ∈ N there is a normal model of S whose domain
has finite cardinality > k. We show that S has an infinite normal model.
For each n ∈ N let ϕn be the formula ∀x0 . . . xn∃y(¬(y=̇x0) ∧ . . . ∧ ¬(y=̇xn))
expressing “more than n elements”. Then every finite subset of
S ∪ {ϕn | n ∈ N} has a normal model. By the finiteness/compactness theorem
with equality, S ∪ {ϕn | n ∈ N} has a normal model I.
Obviously, I cannot be finite, but is also a normal model of S.

Thomas Eiter and Reinhard Pichler 19 December, 2012 44/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Theorem
If a set of formulas with equality has arbitrarily large finite normal models, then
it has an infinite normal model.

Proof
Let S be such that for each k ∈ N there is a normal model of S whose domain
has finite cardinality > k. We show that S has an infinite normal model.
For each n ∈ N let ϕn be the formula ∀x0 . . . xn∃y(¬(y=̇x0) ∧ . . . ∧ ¬(y=̇xn))
expressing “more than n elements”. Then every finite subset of
S ∪ {ϕn | n ∈ N} has a normal model. By the finiteness/compactness theorem
with equality, S ∪ {ϕn | n ∈ N} has a normal model I.
Obviously, I cannot be finite, but is also a normal model of S.

Thomas Eiter and Reinhard Pichler 19 December, 2012 44/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Corollary
A satisfiable set of formulas with equality has either only finite normal models of
a bounded cardinality, or infinite normal models.

Corollary
Unbounded finiteness cannot be expressed in first-order predicate logic with
equality.

Theorem (Löwenheim-Skolem)

Every satisfiable enumerable set of closed formulas has a model with a finite or
infinite enumerable domain.

Thomas Eiter and Reinhard Pichler 19 December, 2012 45/45

Foundations of DKS 2. Predicate Logic 2.6 Model Cardinalities

Corollary
A satisfiable set of formulas with equality has either only finite normal models of
a bounded cardinality, or infinite normal models.

Corollary
Unbounded finiteness cannot be expressed in first-order predicate logic with
equality.

Theorem (Löwenheim-Skolem)

Every satisfiable enumerable set of closed formulas has a model with a finite or
infinite enumerable domain.

Thomas Eiter and Reinhard Pichler 19 December, 2012 45/45

	General Information
	Predicate Logic
	Query Languages and Logic
	Syntax of First-Order Predicate Logic
	Semantics of First-Order Predicate Logic
	Equality
	Undecidability
	Model Cardinalities

